Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(12): e2314995121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38470918

RESUMEN

Collective properties of complex systems composed of many interacting components such as neurons in our brain can be modeled by artificial networks based on disordered systems. We show that a disordered neural network of superconducting loops with Josephson junctions can exhibit computational properties like categorization and associative memory in the time evolution of its state in response to information from external excitations. Superconducting loops can trap multiples of fluxons in many discrete memory configurations defined by the local free energy minima in the configuration space of all possible states. A memory state can be updated by exciting the Josephson junctions to fire or allow the movement of fluxons through the network as the current through them surpasses their critical current thresholds. Simulations performed with a lumped element circuit model of a 4-loop network show that information written through excitations is translated into stable states of trapped flux and their time evolution. Experimental implementation on a high-Tc superconductor YBCO-based 4-loop network shows dynamically stable flux flow in each pathway characterized by the correlations between junction firing statistics. Neural network behavior is observed as energy barriers separating state categories in simulations in response to multiple excitations, and experimentally as junction responses characterizing different flux flow patterns in the network. The state categories that produce these patterns have different temporal stabilities relative to each other and the excitations. This provides strong evidence for time-dependent (short-to-long-term) memories, that are dependent on the geometrical and junction parameters of the loops, as described with a network model.

2.
Proc Natl Acad Sci U S A ; 120(30): e2302099120, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459539

RESUMEN

Copper oxide superconductors universally exhibit multiple forms of electronically ordered phases that break the native translational symmetry of the CuO2 planes. In underdoped cuprates with correlated metallic ground states, charge/spin stripes and incommensurate charge density waves (CDWs) have been experimentally observed over the years, while early theoretical studies also predicted the emergence of a Coulomb-frustrated 'charge crystal' phase in the very lightly doped, insulating limit of CuO2 planes. Here, we search for signatures of CDW order in very lightly hole-doped cuprates from the 123 family RBa2Cu3O7 - δ (RBCO; R: Y or rare earth), by using resonant X-ray scattering, electron transport, and muon spin rotation measurements to resolve the electronic and magnetic ground states fully. Specifically, Pr is used to substitute Y at the R-site to systematically suppress the superconductivity and access the extremely low hole-doping regime of the cuprate phase diagram without changing the oxygen stoichiometry. X-ray scattering data taken on Pr-doped YBCO thin films reveal an in-plane CDW order that follows the same linear evolution of wave vector versus hole concentration as oxygen-underdoped YBCO but extends all the way to the insulating and magnetically ordered Mott limit. Combined with the recent observation of charge crystal phase on an insulating surface of Bi2Sr2CaCu2O8 + z, our results in RBCO suggest that this electronic symmetry breaking is universally present in very lightly doped CuO2 planes. These findings bridge the gap between the Mott insulating state and the underdoped metallic state and underscore the prominent role that Coulomb-frustrated electronic phase separation plays among all cuprates.

3.
Sci Adv ; 8(16): eabn4485, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35452286

RESUMEN

In superconductors, magnetic fields are quantized into discrete fluxons (flux quanta Φ0), made of microscopic circulating supercurrents. We introduce a multiterminal synapse network comprising a disordered array of superconducting loops with Josephson junctions. The loops can trap fluxons defining memory, while the junctions allow their movement between loops. Dynamics of fluxons through such a disordered system through a complex reconfigurable energy landscape represents brain-like spiking information flow. In this work, we experimentally demonstrate a three-loop network using YBa2Cu3O7 - δ-based superconducting loops and Josephson junctions, which exhibit stable memory configurations of trapped flux in loops that determine the rate of flow of fluxons through synaptic connections. The memory states are, in turn, affected by the applied input signals but can also be externally configured electrically through control current/feedback terminals. These results establish a previously unexplored, biologically similar architectural approach to neuromorphic computing that is scalable while dissipating energy of atto Joules/spike.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32042239

RESUMEN

In this work, we investigate two-dimensional arrays of High-T C superconducting quantum interference devices (SQUIDs) for optimization of their electrical transport characteristics. Specifically, we look at devices with different electrode configurations in between the series segments to gain insight into how the array spacing, in the direction of the bias current, affects the voltage magnetic field characteristics. Our results suggest that for spacing dimensions greater than the penetration depth interactions are minimal. Furthermore, comparisons of voltage field characteristics reveal higher modulation voltages and narrower peaks with as the numbers of SQUIDs in the parallel direction increases from 1 to 6. For larger numbers of SQUIDs in parallel greater than 6 little change is observed. These results suggest a pathway to SQUID array scaling for very large numbers of SQUIDs within in a small area.

5.
Appl Phys Lett ; 113(16): 162602, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30364078

RESUMEN

Direct write patterning of high-transition temperature (high-T C) superconducting oxide thin films with a focused helium ion beam is a formidable approach for the scaling of high-T C circuit feature sizes down to the nanoscale. In this letter, we report using this technique to create a sensitive micro superconducting quantum interference device (SQUID) magnetometer with a sensing area of about 100 × 100 µm2. The device is fabricated from a single 35-nm thick YBa2Cu3O7- δ film. A flux concentrating pick-up loop is directly coupled to a 10 nm × 20 µm nano-slit SQUID. The SQUID is defined entirely by helium ion irradiation from a gas field ion source. The irradiation converts the superconductor to an insulator, and no material is milled away or etched. In this manner, a very narrow non-superconducting nano-slit is created entirely within the plane of the film. The narrow slit dimension allows for maximization of the coupling to the field concentrator. Electrical measurements reveal a large 0.35 mV modulation with a magnetic field. We measure a white noise level of 2 µΦ0/Hz1∕2. The field noise of the magnetometer is 4 pT/Hz1∕2 at 4.2 K.

6.
Sci Rep ; 6: 21460, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26888720

RESUMEN

The interaction between two different materials can present novel phenomena that are quite different from the physical properties observed when each material stands alone. Strong electronic correlations, such as magnetism and superconductivity, can be produced as the result of enhanced Coulomb interactions between electrons. Two-dimensional materials are powerful candidates to search for the novel phenomena because of the easiness of arranging them and modifying their properties accordingly. In this work, we report magnetic effects in graphene, a prototypical non-magnetic two-dimensional semi-metal, in the proximity with sulfur, a diamagnetic insulator. In contrast to the well-defined metallic behaviour of clean graphene, an energy gap develops at the Fermi energy for the graphene/sulfur compound with decreasing temperature. This is accompanied by a steep increase of the resistance, a sign change of the slope in the magneto-resistance between high and low fields, and magnetic hysteresis. A possible origin of the observed electronic and magnetic responses is discussed in terms of the onset of low-temperature magnetic ordering. These results provide intriguing insights on the search for novel quantum phases in graphene-based compounds.

7.
Nat Nanotechnol ; 10(7): 598-602, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25915196

RESUMEN

Since the discovery of the high-transition-temperature superconductors (HTSs), researchers have explored many methods to fabricate superconducting tunnel junctions from these materials for basic science purposes and applications. HTS circuits operating at liquid-nitrogen temperatures (∼77 K) would significantly reduce power requirements in comparison with those fabricated from conventional superconductors. The difficulty is that the superconducting coherence length is very short and anisotropic in these materials, typically ∼2 nm in the a-b plane and ∼0.2 nm along the c axis. The electrical properties of Josephson junctions are therefore sensitive to chemical variations and structural defects on atomic length scales. To make multiple uniform HTS junctions, control at the atomic level is required. In this Letter we demonstrate all-HTS Josephson superconducting tunnel junctions created by using a 500-pm-diameter focused beam of helium ions to directly write tunnel barriers into YBa2Cu3O(7-δ) (YBCO) thin films. We demonstrate the ability to control the barrier properties continuously from conducting to insulating by varying the irradiation dose. This technique could provide a reliable and reproducible pathway for scaling up quantum-mechanical circuits operating at liquid-nitrogen temperatures, as well as an avenue to conduct novel planar superconducting tunnelling studies for basic science.

8.
Phys Rev Lett ; 110(6): 067202, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23432297

RESUMEN

We report the creation of a multiferroic field effect device with a BiFeO(3) (BFO) (antiferromagnetic-ferroelectric) gate dielectric and a La(0.7)Sr(0.3)MnO(3) (LSMO) (ferromagnetic) conducting channel that exhibits direct, bipolar electrical control of exchange bias. We show that exchange bias is reversibly switched between two stable states with opposite exchange bias polarities upon ferroelectric poling of the BFO. No field cooling, temperature cycling, or additional applied magnetic or electric field beyond the initial BFO polarization is needed for this bipolar modulation effect. Based on these results and the current understanding of exchange bias, we propose a model to explain the control of exchange bias. In this model the coupled antiferromagnetic-ferroelectric order in BFO along with the modulation of interfacial exchange interactions due to ionic displacement of Fe(3+) in BFO relative to Mn(3+/4+) in LSMO cause bipolar modulation.

9.
Nat Mater ; 9(9): 756-61, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20657590

RESUMEN

Electric-field control of magnetization has many potential applications in magnetic memory storage, sensors and spintronics. One approach to obtain this control is through multiferroic materials. Instead of using direct coupling between ferroelectric and ferromagnetic order parameters in a single-phase multiferroic material, which only shows a weak magnetoelectric effect, a unique method using indirect coupling through an intermediate antiferromagnetic order parameter can be used. In this article, we demonstrate electrical control of exchange bias using a field-effect device employing multiferroic (ferroelectric/antiferromagnetic) BiFeO(3) as the dielectric and ferromagnetic La(0.7)Sr(0.3)MnO(3) as the conducting channel; we can reversibly switch between two distinct exchange-bias states by switching the ferroelectric polarization of BiFeO(3). This is an important step towards controlling magnetization with electric fields, which may enable a new class of electrically controllable spintronic devices and provide a new basis for producing electrically controllable spin-polarized currents.

10.
Nano Lett ; 9(10): 3581-5, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19751069

RESUMEN

Very large scale integration of Josephson junctions in a two-dimensional series-parallel array has been achieved by ion irradiating a YBa(2)Cu(3)O(7-delta) film through slits in a nanofabricated mask created with electron beam lithography and reactive ion etching. The mask consisted of 15820 high aspect ratio (20:1), 35 nm wide slits that restricted the irradiation in the film below to form Josephson junctions. Characterizing each parallel segment k, containing 28 junctions, with a single critical current I(ck) we found a standard deviation in I(ck) of about 16%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA