Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39269660

RESUMEN

Integrating light emitters based on III-V materials with silicon-based electronics is crucial for further increase in data transfer rates in communication systems since the indirect bandgap of silicon prevents its direct use as a light source. We investigate here InAs/InGaAlAs quantum dot (QD) structures grown directly on 5° off-cut Si substrate and emitting light at 1.5 µm, compatible with established telecom platform. Using different dislocation defect filtering layers, exploiting strained superlattices, and supplementary QD layers, we mitigate the effects of lattice constant and thermal expansion mismatches between III-V materials and Si during growth. Complementary optical spectroscopy techniques, i.e. photoreflectance and temperature-, time- and polarization-resolved photoluminescence, allow us to determine the optical quality and application potential of the obtained structures by comparing them to a reference sample-state-of-the-art QDs grown on InP. Experimental findings are supported by calculations of excitonic states and optical transitions by combining multiband k•p and configuration-interaction methods. We show that our design of structures prevents the generation of a considerable density of defects, as intended. The emission of Si-based structures appears to be much broader than for the reference dots, due to the creation of different QD populations which might be a disadvantage in particular laser applications, however, could be favorable for others, e.g., in broadly tunable devices, sensors, or optical amplifiers. Eventually, we identify the overall most promising combination of defect filtering layers and discuss its advantages and limitations and prospects for further improvements.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36986013

RESUMEN

Two-dimensional van der Waals materials exhibit particularly strong excitonic effects, which causes them to be an exceptionally interesting platform for the investigation of exciton physics. A notable example is the two-dimensional Ruddlesden-Popper perovskites, where quantum and dielectric confinement together with soft, polar, and low symmetry lattice create a unique background for electron and hole interaction. Here, with the use of polarization-resolved optical spectroscopy, we have demonstrated that the simultaneous presence of tightly bound excitons, together with strong exciton-phonon coupling, allows for observing the exciton fine structure splitting of the phonon-assisted transitions of two-dimensional perovskite (PEA)2PbI4, where PEA stands for phenylethylammonium. We demonstrate that the phonon-assisted sidebands characteristic for (PEA)2PbI4 are split and linearly polarized, mimicking the characteristics of the corresponding zero-phonon lines. Interestingly, the splitting of differently polarized phonon-assisted transitions can be different from that of the zero-phonon lines. We attribute this effect to the selective coupling of linearly polarized exciton states to non-degenerate phonon modes of different symmetries resulting from the low symmetry of (PEA)2PbI4 lattice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA