Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 16(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38668592

RESUMEN

Broiler chickens in livestock production face numerous challenges that can impact their health and welfare, including mycotoxin contamination and heat stress. In this study, we aimed to investigate the combined effects of two mycotoxins, deoxynivalenol (DON) and fumonisins (FBs), along with short-term heat stress conditions, on broiler gut health and endotoxin translocation. An experiment was conducted to assess the impacts of mycotoxin exposure on broilers, focusing on intestinal endotoxin activity, gene expression related to gut barrier function and inflammation, and the plasma concentration of the endotoxin marker 3-OH C14:0 either at thermoneutral conditions or short-term heat stress conditions. Independently of heat stress, broilers fed DON-contaminated diets exhibited reduced body weight gain during the starter phase (Day 1-12) compared to the control group, while broilers fed FB-contaminated diets experienced decreased body weight gain throughout the entire trial period (Day 1-24). Furthermore, under thermoneutral conditions, broilers fed DON-contaminated diets showed an increase in 3-OH C14:0 concentration in the plasma. Moreover, under heat stress conditions, the expression of genes related to gut barrier function (Claudin 5, Zonulin 1 and 2) and inflammation (Toll-like receptor 4, Interleukin-1 beta, Interleukin-6) was significantly affected by diets contaminated with mycotoxins, depending on the gut segment. This effect was particularly prominent in broilers fed diets contaminated with FBs. Notably, the plasma concentration of 3-OH C14:0 increased in broilers exposed to both DON- and FB-contaminated diets under heat stress conditions. These findings shed light on the intricate interactions between mycotoxins, heat stress, gut health, and endotoxin translocation in broiler chickens, highlighting the importance of understanding these interactions for the development of effective management strategies in livestock production to enhance broiler health and welfare.


Asunto(s)
Alimentación Animal , Pollos , Endotoxinas , Contaminación de Alimentos , Fusarium , Tricotecenos , Animales , Pollos/microbiología , Endotoxinas/sangre , Tricotecenos/toxicidad , Fumonisinas/toxicidad , Masculino , Dieta/veterinaria , Respuesta al Choque Térmico/efectos de los fármacos , Micotoxinas/toxicidad
2.
Toxins (Basel) ; 16(1)2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276527

RESUMEN

Fumonisins (FBs), particularly fumonisin B1 (FB1) and fumonisin B2 (FB2) produced mainly by Fusarium verticillioide and Fusarium proliferatum, are common contaminants in animal feed and pose a serious threat to both animal and human health. The use of microbial enzymes to efficiently and specifically convert fumonisins into non-toxic or low-toxic metabolites has emerged as the most promising approach. However, most of the available enzymes have only been evaluated in vitro and lack systematic evaluation in vivo. In this study, the detoxification efficacy of two carboxylesterases, FumD (FUMzyme®) and FumDSB, was evaluated comparatively in piglets. The results show that feeding piglets 4.4 mg/kg FBs-contaminated diets for 32 days did not significantly affect the average daily gain, organ indices, and immunoglobulins of the piglets. However, a significant reduction (21.2%) in anti-inflammatory cytokine interleukin-4 was observed in the FBs group, and supplementation with FUMzyme® and FumDSB significantly increased interleukin-4 by 62.1% and 28.0%, respectively. In addition, FBs-contaminated diets resulted in a 3-fold increase in the serum sphinganine/sphingosine (Sa/So) ratio, which is a specific biomarker that has been used to accurately reflect fumonisin levels. The serum Sa/So ratio was significantly reduced by 48.8% after the addition of FUMzyme®, and was insignificantly reduced by 8.2% in the FumDSB group. These results suggested that FUMzyme was more effective than FumDSB in mitigating FBs toxicity in piglets by down-regulating the Sa/So ratio.


Asunto(s)
Fumonisinas , Fusarium , Animales , Humanos , Porcinos , Fumonisinas/toxicidad , Fumonisinas/metabolismo , Interleucina-4/metabolismo , Esfingosina , Alimentación Animal , Fusarium/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA