Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 12(1): e0169366, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28046118

RESUMEN

The brain of diving mammals tolerates low oxygen conditions better than the brain of most terrestrial mammals. Previously, it has been demonstrated that the neurons in brain slices of the hooded seal (Cystophora cristata) withstand hypoxia longer than those of mouse, and also tolerate reduced glucose supply and high lactate concentrations. This tolerance appears to be accompanied by a shift in the oxidative energy metabolism to the astrocytes in the seal while in terrestrial mammals the aerobic energy production mainly takes place in neurons. Here, we used RNA-Seq to compare the effect of hypoxia and reoxygenation in vitro on brain slices from the visual cortex of hooded seals. We saw no general reduction of gene expression, suggesting that the response to hypoxia and reoxygenation is an actively regulated process. The treatments caused the preferential upregulation of genes related to inflammation, as found before e.g. in stroke studies using mammalian models. Gene ontology and KEGG pathway analyses showed a downregulation of genes involved in ion transport and other neuronal processes, indicative for a neuronal shutdown in response to a shortage of O2 supply. These differences may be interpreted in terms of an energy saving strategy in the seal's brain. We specifically analyzed the regulation of genes involved in energy metabolism. Hypoxia and reoxygenation caused a similar response, with upregulation of genes involved in glucose metabolism and downregulation of the components of the pyruvate dehydrogenase complex. We also observed upregulation of the monocarboxylate transporter Mct4, suggesting increased lactate efflux. Together, these data indicate that the seal brain responds to the hypoxic challenge by a relative increase in the anaerobic energy metabolism.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica/métodos , Hipoxia/genética , Hipoxia/metabolismo , Oxígeno/metabolismo , Phocidae/genética , Animales , Metabolismo Energético/genética , Regulación de la Expresión Génica , Ontología de Genes , Complejo Piruvato Deshidrogenasa/metabolismo , Análisis de Secuencia de ARN , Corteza Visual/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-23187861

RESUMEN

Passive electroreception is a sensory modality in many aquatic vertebrates, predominantly fishes. Using passive electroreception, the animal can detect and analyze electric fields in its environment. Most electric fields in the environment are of biogenic origin, often produced by prey items. These electric fields can be relatively strong and can be a highly valuable source of information for a predator, as underlined by the fact that electroreception has evolved multiple times independently. The only mammals that possess electroreception are the platypus (Ornithorhynchus anatinus) and the echidnas (Tachyglossidae) from the monotreme order, and, recently discovered, the Guiana dolphin (Sotalia guianensis) from the cetacean order. Here we review the morphology, function and origin of the electroreceptors in the two aquatic species, the platypus and the Guiana dolphin. The morphology shows certain similarities, also similar to ampullary electroreceptors in fishes, that provide cues for the search for electroreceptors in more vertebrate and invertebrate species. The function of these organs appears to be very similar. Both species search for prey animals in low-visibility conditions or while digging in the substrate, and sensory thresholds are within one order of magnitude. The electroreceptors in both species are innervated by the trigeminal nerve. The origin of the accessory structures, however, is completely different; electroreceptors in the platypus have developed from skin glands, in the Guiana dolphin, from the vibrissal system.


Asunto(s)
Electricidad , Mamíferos/fisiología , Percepción , Sensación , Animales , Conducta Animal , Delfines/fisiología , Ecosistema , Impedancia Eléctrica , Ornitorrinco/fisiología , Células Receptoras Sensoriales/fisiología , Detección de Señal Psicológica , Transducción de Señal , Tachyglossidae/fisiología
3.
Proc Biol Sci ; 279(1729): 663-8, 2012 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21795271

RESUMEN

Passive electroreception is a widespread sense in fishes and amphibians, but in mammals this sensory ability has previously only been shown in monotremes. While the electroreceptors in fish and amphibians evolved from mechanosensory lateral line organs, those of monotremes are based on cutaneous glands innervated by trigeminal nerves. Electroreceptors evolved from other structures or in other taxa were unknown to date. Here we show that the hairless vibrissal crypts on the rostrum of the Guiana dolphin (Sotalia guianensis), structures originally associated with the mammalian whiskers, serve as electroreceptors. Histological investigations revealed that the vibrissal crypts possess a well-innervated ampullary structure reminiscent of ampullary electroreceptors in other species. Psychophysical experiments with a male Guiana dolphin determined a sensory detection threshold for weak electric fields of 4.6 µV cm(-1), which is comparable to the sensitivity of electroreceptors in platypuses. Our results show that electroreceptors can evolve from a mechanosensory organ that nearly all mammals possess and suggest the discovery of this kind of electroreception in more species, especially those with an aquatic or semi-aquatic lifestyle.


Asunto(s)
Delfines/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Delfines/anatomía & histología , Estimulación Eléctrica , Masculino , Células Receptoras Sensoriales/citología , Vibrisas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...