Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 58(46): 16508-16511, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31536176

RESUMEN

The synthesis, structure, and spectroscopic characterization of the first transplutonium metal-organic framework (MOF) is described. The preparation and structure of Am-GWMOF-6, [Am2 (C6 H8 O4 )3 (H2 O)2 ][(C10 H8 N2 )], is analogous to that of the isostructural trivalent lanthanide-only containing material GWMOF-6. The presented MOF architecture is used as a platform to probe Am3+ coordination chemistry and guest-enhanced luminescent emission, whereas the framework itself provides a means to monitor the effects of self-irradiation upon crystallinity over time. Presented here is a discussion of these properties and the opportunities that MOFs provide in the structural and spectroscopic study of actinides.

2.
Inorg Chem ; 58(9): 5468-5475, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31007022

RESUMEN

The thermal behavior of Tc2O7 has been investigated by single-crystal X-ray diffraction of the solid state over a range of 80-280 K and by ab initio molecular dynamics (MD) simulations. The thermal expansion coefficient of the solid was experimentally determined to be 189 × 10-6 Å3 K-1 at 280 K. The simulations accurately reproduce the experimentally determined crystal structures and thermal expansion within a few percent. The experimental melting point and vapor pressure for Tc2O7 are unusually high and low, respectively, in comparison to similar molecular solids. Through investigating the structure and the motion of the solid across a range of temperatures, we provide insights into the thermal behavior of Tc2O7.

3.
Inorg Chem ; 56(15): 9219-9224, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28737380

RESUMEN

The structure of TcO2 between 25 and 1000 °C has been determined in situ using X-ray powder diffraction methods and is found to remain monoclinic in space group P21/c. Thermal expansion in TcO2 is highly anisotropic, with negative thermal expansion of the b axis observed above 700 °C. This is the result of an anomalous expansion along the a axis that is a consequence of weakening of the Tc-Tc bonds.

4.
Inorg Chem ; 56(5): 2448-2458, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28221038

RESUMEN

The molecular and electronic structures of the group 7 heptoxides were investigated by computational methods as both isolated molecules and in the solid-state. The metal-oxygen-metal bending angle of the single molecule increased with increasing atomic number, with Re2O7 preferring a linear structure. Natural bond orbital and localized orbital bonding analyses indicate that there is a three-center covalent bond between the metal atoms and the bridging oxygen, and the increasing ionic character of the bonds favors larger bond angles. The calculations accurately reproduce the experimental crystal structures within a few percent. Analysis of the band structures and density of states shows similar bonding for all of the solid-state heptoxides, including the presence of the three-center covalent bond. DFT+U simulations show that PBE-D3 underpredicts the band gap by ∼0.2 eV due to an undercorrelation of the metal d conducting states. Homologue and compression studies show that Re2O7 adopts a polymeric structure because the Re-oxide tetrahedra are easily distorted by packing stresses to form additional three-center covalent bonds.

5.
Inorg Chem ; 55(20): 10445-10452, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27700061

RESUMEN

Ditechnetium heptoxide was synthesized from the oxidation of TcO2 with O2 at 450 °C and characterized by single-crystal X-ray diffraction, electron-impact mass spectrometry (EI-MS), and theoretical methods. Refinement of the structure at 100 K indicates that Tc2O7 crystallizes as a molecular solid in the orthorhombic space group Pbca [a = 7.312(3) Å, b = 5.562(2) Å, c = 13.707(5) Å, and V = 557.5(3) Å3]. The Tc2O7 molecule can be described as corner-sharing TcO4 tetrahedron [Tc---Tc = 3.698(1) Å and Tc-OBri-Tc = 180.0°]. The EI-MS spectrum of Tc2O7 consists of both mononuclear and dinuclear species. The main dinuclear species in the gas-phase are Tc2O7 (100%) and Tc2O5 (56%), while the main mononuclear species are TcO3 (33.9%) and TcO2 (42.8%). The difference in the relative intensities of the M2O5 (M = Tc, Re) fragments (1.7% for Re) indicates that these group 7 elements exhibit different gas-phase chemistry. The solid-state structure of Tc2O7 was investigated by density functional theory methods. The optimized structure of the Tc2O7 molecule is in good agreement with the experimental one. Simulations indicate that the more favorable geometry for the Tc2O7 molecule in the gas-phase is bent (Tc-OBri-Tc = 156.5°), while a linear geometry (Tc-OBri-Tc = 180.0°) is favored in the solid-state.

6.
Dalton Trans ; 45(45): 18171-18176, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27792232

RESUMEN

Atomistic investigations of crystalline scheelite, CaWO4, and 99Tc-bearing scheelite, CaWO4:Tc, have been carried out using density functional theory. The lattice constants, bulk modulus, and volume compression data of CaWO4 have been calculated and compared with experimental data, with a focus on predictive understanding of 99Tc incorporation in CaWO4. Defect formation energies have been computed for several possible interstitial (I) and substitutional (S) sites of 99Tc in CaWO4. Both I(Oh) and S(W) sites were found to be energetically favourable for Tc doping. X-ray diffraction (XRD) spectra for each 99Tc defect type have been simulated to help interpret the complex experimental XRD patterns. This work on CaWO4:Tc provides insights into materials generated during nuclear weapons testing and useful spectral signatures for nuclear forensics.

7.
Inorg Chem ; 55(14): 7111-6, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-27387436

RESUMEN

The dinuclear rhenium(II) complex Re2Br4(PMe3)4 was prepared from the reduction of [Re2Br8](2-) with (n-Bu4N)BH4 in the presence of PMe3 in propanol. The complex was characterized by single-crystal X-ray diffraction (SCXRD) and UV-visible spectroscopy. It crystallizes in the monoclinic C2/c space group and is isostructural with its molybdenum and technetium analogues. The Re-Re distance (2.2521(3) Å) is slightly longer than the one in Re2Cl4(PMe3)4 (2.247(1) Å). The molecular and electronic structure of Re2X4(PMe3)4 (X = Cl, Br) were studied by multiconfigurational quantum chemical methods. The computed ground-state geometry is in excellent agreement with the experimental structure determined by SCXRD. The calculated total bond order (2.75) is consistent with the presence of an electron-rich triple bond and is similar to the one found for Re2Cl4(PMe3)4. The electronic absorption spectrum of Re2Br4(PMe3)4 was recorded in benzene and shows a series of low-intensity bands in the range 10 000-26 000 cm(-1). The absorption bands were assigned based on calculations of the excitation energies with the multireference wave functions followed by second-order perturbation theory using the CASSCF/CASPT2 method. Calculations predict that the lowest energy band corresponds to the δ* → σ* transition, while the next higher energy bands were attributed to the δ* → π*, δ → σ*, and δ → π* transitions.

8.
Chem Commun (Camb) ; 51(98): 17379-81, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26490094

RESUMEN

The thorium and uranium dihydride dimer complexes [(C5Me5)2An(H)(µ-H)]2 (An = Th, U) have been easily prepared using phenylsilane, which is an efficient and safer alternative to hydrogen gas. The synthetic utility of this new hydriding method has been demonstrated by the preparation of a variety of organometallic complexes, including, for the first time, (C5Me5)2U(SMe)2, (C5Me5)2Th(C4Ph4), (C5Me5)2U(C4Ph4), (C5Me5)2ThS5, and (C5Me5)2U(bipy) using [(C5Me5)2An(H)(µ-H)]2 (An = Th, U) as multi-electron reductants.

9.
Acc Chem Res ; 47(2): 624-32, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24393028

RESUMEN

Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/ß-TcCl3, α/ß-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (ß-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, ß-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc(IV)) to d(5) (Tc(II)) is accompanied by the formation of metal-metal bonds in the coordination polyhedra. There is no metal-metal interaction in TcX4, a Tc═Tc double bond is present in α/ß-TcCl3, and a Tc≡Tc triple bond is present in α/ß-TcCl2. We investigated the thermal behavior of these binary halides in sealed tubes under vacuum at elevated temperature. Technetium tetrachloride decomposes stepwise to α-TcCl3 and ß-TcCl2 at 450 °C, while ß-TcCl3 converts to α-TcCl3 at 280 °C. The technetium dichlorides disproportionate to Tc metal and TcCl4 above ∼600 °C. At 450 °C in a sealed Pyrex tube, TcBr3 decomposes to Na{[Tc6Br12]2Br}, while TcI3 decomposes to Tc metal. We have used technetium tribromide in the preparation of new divalent complexes; we expect that the other halides will also serve as starting materials for the synthesis of new compounds (e.g., complexes with a Tc3(9+) core, divalent iodide complexes, binary carbides, nitrides, and phosphides, etc.). Technetium halides may also find applications in the nuclear fuel cycle; their thermal properties could be utilized in separation processes using halide volatility. In summary, we hope that these new insights on technetium binary halides will contribute to a better understanding of the chemistry of this fascinating element.

10.
Inorg Chem ; 53(3): 1260-2, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24437639

RESUMEN

Magnetic circular dichroism (MCD) and electronic absorption spectroscopies have been used to probe the electronic structure of the classical paramagnetic metal-metal-bonded complexes [Re2X4(PMe3)4](+) (X = Cl, Br). A violation of the MCD sum rule is observed that indicates the presence of ground-state contributions to the MCD intensity. The z-polarized δ → δ* band in the near-IR is formally forbidden in MCD but gains intensity through a combination of ground- and excited-state mechanisms to yield a positive C term.

11.
Inorg Chem ; 52(24): 14309-16, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24295331

RESUMEN

Technetium tribromide and triiodide were obtained from the reaction of the quadruply Tc-Tc-bonded dimer Tc2(O2CCH3)4Cl2 with flowing HX(g) (X = Br, I) at elevated temperatures. At 150 and 300 °C, the reaction with HBr(g) yields TcBr3 crystallizing with the TiI3 structure type. The analogous reactions with flowing HI(g) yield TcI3, the first technetium binary iodide to be reported. Powder X-ray diffraction (PXRD) measurements show the compound to be amorphous at 150 °C and semicrystalline at 300 °C. X-ray absorption fine structure spectroscopy indicates TcI3 to consist of face-sharing TcI6 octahedra. Reactions of technetium metal with elemental iodine in a sealed Pyrex ampules in the temperature range 250-400 °C were performed. At 250 °C, no reaction occurred, while the reaction at 400 °C yielded a product whose PXRD pattern matches the one of TcI3 obtained from the reaction of Tc2(O2CCH3)4Cl2 and flowing HI(g). The thermal stability of TcBr3 and TcI3 was investigated in Pyrex and/or quartz ampules at 450 °C under vacuum. Technetium tribromide decomposes to Na{[Tc6Br12]2Br} in a Pyrex ampule and to technetium metal in a quartz ampule; technetium triiodide decomposes to technetium metal in a Pyrex ampule.

12.
J Am Chem Soc ; 135(42): 15955-62, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-24053573

RESUMEN

A second polymorph of technetium dichloride, ß-TcCl2, has been synthesized from the reaction of Tc metal and chlorine in a sealed tube at 450 °C. The crystallographic structure and physical properties of ß-TcCl2 have been investigated. The structure of ß-TcCl2 consists of infinite chains of face sharing [Tc2Cl8] units; within a chain, the Tc≡Tc vectors of two adjacent [Tc2Cl8] units are ordered in the long-range where perpendicular and/or parallel arrangement of Tc≡Tc vectors yields a modulated structure. Resistivity and Seebeck measurements performed on a ß-TcCl2 single crystal indicate the compound to be a p-type semiconductor while a magnetic susceptibility measurement shows technetium dichloride to be diamagnetic. A band gap of 0.12(2) eV was determined by reflectance spectroscopy measurements. Theoretical calculations at the density functional level were utilized for the investigation of other possible stable forms of TcCl2.


Asunto(s)
Electrones , Compuestos de Tecnecio/química , Cristalografía por Rayos X , Fenómenos Magnéticos , Modelos Moleculares , Estructura Molecular , Tamaño de la Partícula , Teoría Cuántica , Propiedades de Superficie , Temperatura
13.
Dalton Trans ; 42(43): 15288-95, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24030159

RESUMEN

The structures and properties of layered technetium dichalcogenides TcX2 (X = S, Se, Te) have been investigated using density functional theory. The equilibrium structures of TcSe2 and TcTe2, adopting distorted Cd(OH)2-type unit cells similar to TcS2, are reported for the first time at the atomic level, along with their electronic properties. In contrast to previous X-ray diffraction analyses, calculations reveal that stoichiometric TcTe2 is not isomorphous to the high-temperature monoclinic phase ß-MoTe2. All three compounds are found to be semiconductors with calculated band gaps of 0.9 eV for TcS2, 0.8 eV for TcSe2, and 0.3 eV for TcTe2. The thermal properties of these TcX2 compounds have also been predicted using phonon frequencies calculated with density functional perturbation theory.

14.
Dalton Trans ; 42(44): 15540-3, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24056388

RESUMEN

Technetium disulfide was prepared by reaction between the elements in a sealed tube at 450 °C, by reaction between Tc2(O2CCH3)5 and H2S gas in a flowing system at 450 °C and by reaction between K2TcCl6 and H2S gas in sulfuric acid. The samples were analysed by X-ray absorption fine structure (XAFS) spectroscopy.

15.
Chemistry ; 19(37): 12272-80, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-23907896

RESUMEN

The superbulky deca-aryleuropocene [Eu(Cp(BIG))2], Cp(BIG) = (4-nBu-C6H4)5-cyclopentadienyl, was prepared by reaction of [Eu(dmat)2(thf)2], DMAT = 2-Me2N-α-Me3Si-benzyl, with two equivalents of Cp(BIG)H. Recrystallizyation from cold hexane gave the product with a surprisingly bright and efficient orange emission (45% quantum yield). The crystal structure is isomorphic to those of [M(Cp(BIG))2] (M = Sm, Yb, Ca, Ba) and shows the typical distortions that arise from Cp(BIG)⋅⋅⋅Cp(BIG) attraction as well as excessively large displacement parameter for the heavy Eu atom (U(eq) = 0.075). In order to gain information on the true oxidation state of the central metal in superbulky metallocenes [M(Cp(BIG))2] (M = Sm, Eu, Yb), several physical analyses have been applied. Temperature-dependent magnetic susceptibility data of [Yb(Cp(BIG))2] show diamagnetism, indicating stable divalent ytterbium. Temperature-dependent (151)Eu Mössbauer effect spectroscopic examination of [Eu(Cp(BIG))2] was examined over the temperature range 93-215 K and the hyperfine and dynamical properties of the Eu(II) species are discussed in detail. The mean square amplitude of vibration of the Eu atom as a function of temperature was determined and compared to the value extracted from the single-crystal X-ray data at 203 K. The large difference in these two values was ascribed to the presence of static disorder and/or the presence of low-frequency torsional and librational modes in [Eu(Cp(BIG))2]. X-ray absorbance near edge spectroscopy (XANES) showed that all three [Ln(Cp(BIG))2] (Ln = Sm, Eu, Yb) compounds are divalent. The XANES white-line spectra are at 8.3, 7.3, and 7.8 eV, for Sm, Eu, and Yb, respectively, lower than the Ln2O3 standards. No XANES temperature dependence was found from room temperature to 100 K. XANES also showed that the [Ln(Cp(BIG))2] complexes had less trivalent impurity than a [EuI2(thf)x] standard. The complex [Eu(Cp(BIG))2] shows already at room temperature strong orange photoluminescence (quantum yield: 45 %): excitation at 412 nm (24,270 cm(-1)) gives a symmetrical single band in the emission spectrum at 606 nm (νmax =16495 cm(-1), FWHM: 2090 cm(-1), Stokes-shift: 2140 cm(-1)), which is assigned to a 4f(6)5d(1) → 4f(7) transition of Eu(II). These remarkable values compare well to those for Eu(II)-doped ionic host lattices and are likely caused by the rigidity of the [Eu(Cp(BIG))2] complex. Sharp emission signals, typical for Eu(III), are not visible.

16.
Inorg Chem ; 52(10): 5660-2, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23659536

RESUMEN

The compound Na{[Tc6Br12]2Br} has been obtained from the decomposition of TcBr4 under vacuum in a Pyrex ampule at 450 °C. The stoichiometry of the compound has been confirmed by energy-dispersive X-ray spectroscopy and its structure determined by single-crystal X-ray diffraction. The compound contains a trigonal-prismatic hexanuclear [Tc6Br12] cluster. The cluster is composed of two triangular Tc3Br6 units linked by multiple Tc-Tc bonds. In the Tc3Br6 unit, the average Tc-Tc distance [2.6845(5) Å] is characteristic of Tc-Tc single bonds, while the average Tc-Tc distance between the two triangular units [2.1735(5) Å] is characteristic of Tc≡Tc triple bonds. The electronic structure of the [Tc6Br12] cluster was studied by first-principles calculations, which confirm the presence of single and triple Tc-Tc bonds in the cluster.

17.
Dalton Trans ; 42(13): 4348-52, 2013 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-23403900

RESUMEN

The reaction between HTcO(4) and MeOH in 13 M H(2)SO(4) was investigated by (99)Tc NMR, UV-visible and X-ray absorption fine structure (XAFS) spectroscopy. Experimental results and first principles calculations show the formation of Tc(+5) sulfate complexes. The results expand the fundamental understanding of Tc in high acid solutions.


Asunto(s)
Complejos de Coordinación/química , Metanol/química , Ácidos Sulfúricos/química , Tecnecio/química , Conformación Molecular , Espectroscopía de Absorción de Rayos X
18.
Inorg Chem ; 52(2): 761-76, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23270453

RESUMEN

Complexations of lanthanide ions with 5,6-dialkyl-2,6-bis(1,2,4-triazin-3-yl)pyridine [RBTP; R = H (HBTP), methyl (MeBTP), ethyl (EtBTP)] derivatives have been studied in the acetonitrile medium by electrospray ionization mass spectrometry, time-resolved laser-induced fluorescence spectroscopy, and UV-vis spectrophotometric titration. These studies were carried out in the absence and presence of a nitrate ion in order to understand the effect of the nitrate ion on their complexation behavior, particularly in the poor solvating acetonitrile medium where strong nitrate complexation of hard lanthanide ions is expected. Consistent results from all three techniques undoubtedly show the formation of lower stoichiometric complexes in the presence of excess nitrate ion. This kind of nitrate ion effect on the speciation of Ln(3+) complexes of RBTP ligands has not so far been reported in the literature. Different Am(3+) and Ln(3+) complexes were observed with RBTP ligands in the presence of 0.01 M tetramethylammonium nitrate, and their stability constant values are determined using UV-vis spectrophotometric titrations. The formation of higher stoichiometric complexes and higher stability constants for Am(3+) compared to Ln(3+) ions indicates the selectivity of these classes of ligands. A single-crystal X-ray diffraction (XRD) study of europium(III) complexes shows the formation of a dimeric complex with HBTP and a monomeric complex with EtBTP, whereas MeBTP forms both the dimeric and monomeric complexes. Density functional theory calculations confirm the findings from single-crystal XRD and also predict the structures of Eu(3+) and Am(3+) complexes observed experimentally.

19.
Inorg Chem ; 52(7): 3573-8, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23153109

RESUMEN

Technetium is intimately linked with nuclear reactions. The ultraminute natural levels in the environment are due to the spontaneous fission of uranium isotopes. The discovery of technetium was born from accelerator reactions, and its use and presence in the modern world are directly due to nuclear reactors. While occupying a central location in the periodic table, the chemistry of technetium is poorly explored, especially when compared to its neighboring elements, i.e., molybdenum, ruthenium, and rhenium. This state of affairs, which is tied to the small number of laboratories equipped to work with the long-lived (99)Tc isotope, provides a remarkable opportunity to combine basic studies with applications for the nuclear fuel cycle. An example is given through examination of the technetium halide compounds. Binary metal halides represent some of the most fundamental of inorganic compounds. The synthesis of new technetium halides demonstrates trends with structure, coordination number, and speciation that can be utilized in the nuclear fuel cycle. Examples are provided for technetium-zirconium alloys as waste forms and the formation of reduced technetium species in separations.

20.
Inorg Chem ; 51(17): 9563-70, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22906536

RESUMEN

The cesium salts of [Tc(2)X(8)](3-) (X = Cl, Br), the reduction product of (n-Bu(4)N)[TcOCl(4)] with (n-Bu(4)N)BH(4) in THF, and the product obtained from reaction of Tc(2)(O(2)CCH(3))(4)Cl(2) with HCl(g) at 300 °C have been characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. For the [Tc(2)X(8)](3-) anions, the Tc-Tc separations found by EXAFS spectroscopy (2.12(2) Å for both X = Cl and Br) are in excellent agreement with those found by single-crystal X-ray diffraction (SCXRD) measurements (2.117[4] Å for X = Cl and 2.1265(1) Å for X = Br). The Tc-Tc separation found by EXAFS in these anions is slightly shorter than those found in the [Tc(2)X(8)](2-) anions (2.16(2) Å for X = Cl and Br). Spectroscopic and SCXRD characterization of the reduction product of (n-Bu(4)N)[TcOCl(4)] with (n-Bu(4)N)BH(4) are consistent with the presence of dinuclear species that are related to the [Tc(2)Cl(8)](n-) (n = 2, 3) anions. From these results, a new preparation of (n-Bu(4)N)(2)[Tc(2)Cl(8)] was developed. Finally, EXAFS characterization of the product obtained from reaction of Tc(2)(O(2)CCH(3))(4)Cl(2) with HCl(g) at 300 °C indicates the presence of amorphous α-TcCl(3). The Tc-Tc separation (i.e., 2.46(2) Å) measured in this compound is consistent with the presence of Tc═Tc double bonds in the [Tc(3)](9+) core.


Asunto(s)
Cloruros/química , Cloruros/síntesis química , Tecnecio/química , Cesio/química , Técnicas de Química Sintética , Furanos/química , Ácido Clorhídrico/química , Modelos Moleculares , Conformación Molecular , Temperatura , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...