Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Pathol ; 25(4): e13458, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619888

RESUMEN

Due to rapidly emerging resistance to single-site fungicides in fungal pathogens of plants, there is a burgeoning need for safe and multisite fungicides. Plant antifungal peptides with multisite modes of action (MoA) have potential as bioinspired fungicides. Medicago truncatula defensin MtDef4 was previously reported to exhibit potent antifungal activity against fungal pathogens. Its MoA involves plasma membrane disruption and binding to intracellular targets. However, specific biochemical processes inhibited by this defensin and causing cell death have not been determined. Here, we show that MtDef4 exhibited potent antifungal activity against Botrytis cinerea. It induced severe plasma membrane and organelle irregularities in the germlings of this pathogen. It bound to fungal ribosomes and inhibited protein translation in vitro. A MtDef4 variant lacking antifungal activity exhibited greatly reduced protein translation inhibitory activity. A cation-tolerant MtDef4 variant was generated that bound to ß-glucan of the fungal cell wall with higher affinity than MtDef4. It also conferred a greater reduction in the grey mould disease symptoms than MtDef4 when applied exogenously on Nicotiana benthamiana plants, tomato fruits and rose petals. Our findings revealed inhibition of protein synthesis as a likely target of MtDef4 and the potential of its cation-tolerant variant as a peptide-based fungicide.


Asunto(s)
Antifúngicos , Fungicidas Industriales , Antifúngicos/farmacología , Antifúngicos/metabolismo , Fungicidas Industriales/farmacología , Plantas/metabolismo , Péptidos , Defensinas/genética , Defensinas/farmacología , Defensinas/metabolismo , Cationes , Enfermedades de las Plantas/microbiología , Botrytis/metabolismo
2.
Methods Mol Biol ; 2725: 121-129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37856021

RESUMEN

Volume electron microscopy technologies such as serial block face scanning electron microscopy (SBF-SEM) allow the characterization of tissue organization and cellular content in three dimensions at nanoscale resolution. Here, we describe the procedure to process and image an air-liquid interface culture of human or mouse airway epithelial cells for visualization of the multiciliated epithelium by SBF-SEM in vertical or horizontal cross section.


Asunto(s)
Imagenología Tridimensional , Microscopía Electrónica de Volumen , Animales , Humanos , Ratones , Imagenología Tridimensional/métodos , Microscopía Electrónica de Rastreo , Epitelio , Células Epiteliales
3.
Microsc Microanal ; 29(Supplement_1): 1182, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613220
4.
Methods Cell Biol ; 177: 83-99, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37451777

RESUMEN

Volume electron microscopy techniques play an important role in plant research from understanding organelles and unicellular forms to developmental studies, environmental effects and microbial interactions with large plant structures, to name a few. Due to large air voids central vacuole, cell wall and waxy cuticle, many plant tissues pose challenges when trying to achieve high quality morphology, metal staining and adequate conductivity for high-resolution volume EM studies. Here, we applied a robust conventional chemical fixation strategy to address the special challenges of plant samples and suitable for, but not limited to, serial block-face and focused ion beam scanning electron microscopy. The chemistry of this protocol was modified from an approach developed for improved and uniform staining of large brain volumes. Briefly, primary fixation was in paraformaldehyde and glutaraldehyde with malachite green followed by secondary fixation with osmium tetroxide, potassium ferrocyanide, thiocarbohydrazide, osmium tetroxide and finally uranyl acetate and lead aspartate staining. Samples were then dehydrated in acetone with a propylene oxide transition and embedded in a hard formulation Quetol 651 resin. The samples were trimmed and mounted with silver epoxy, metal coated and imaged via serial block-face scanning electron microscopy and focal charge compensation for charge suppression. High-contrast plant tobacco and duckweed leaf cellular structures were readily visible including mitochondria, Golgi, endoplasmic reticulum and nuclear envelope membranes, as well as prominent chloroplast thylakoid membranes and individual lamella in grana stacks. This sample preparation protocol serves as a reliable starting point for routine plant volume electron microscopy.


Asunto(s)
Tetróxido de Osmio , Microscopía Electrónica de Volumen , Coloración y Etiquetado , Glutaral , Microscopía Electrónica de Rastreo
5.
Mol Plant Pathol ; 24(8): 896-913, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37036170

RESUMEN

Chemical fungicides have been instrumental in protecting crops from fungal diseases. However, increasing fungal resistance to many of the single-site chemical fungicides calls for the development of new antifungal agents with novel modes of action (MoA). The sequence-divergent cysteine-rich antifungal defensins with multisite MoA are promising starting templates for design of novel peptide-based fungicides. Here, we experimentally tested such a set of 17-amino-acid peptides containing the γ-core motif of the antifungal plant defensin MtDef4. These designed peptides exhibited antifungal properties different from those of MtDef4. Focused analysis of a lead peptide, GMA4CG_V6, showed that it was a random coil in solution with little or no secondary structure elements. Additionally, it exhibited potent cation-tolerant antifungal activity against the plant fungal pathogen Botrytis cinerea, the causal agent of grey mould disease in fruits and vegetables. Its multisite MoA involved localization predominantly to the plasma membrane, permeabilization of the plasma membrane, rapid internalization into the vacuole and cytoplasm, and affinity for the bioactive phosphoinositides phosphatidylinositol 3-phosphate (PI3P), PI4P, and PI5P. The sequence motif RRRW was identified as a major determinant of the antifungal activity of this peptide. While topical spray application of GMA4CG_V6 on Nicotiana benthamiana and tomato plants provided preventive and curative suppression of grey mould disease symptoms, the peptide was not internalized into plant cells. Our findings open the possibility that truncated and modified defensin-derived peptides containing the γ-core sequence could serve as promising candidates for further development of bio-inspired fungicides.


Asunto(s)
Antifúngicos , Fungicidas Industriales , Antifúngicos/farmacología , Antifúngicos/metabolismo , Fungicidas Industriales/farmacología , Plantas/microbiología , Péptidos/farmacología , Péptidos/metabolismo , Defensinas/farmacología , Defensinas/metabolismo , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Botrytis/metabolismo
6.
Mol Plant Microbe Interact ; 36(4): 245-255, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36947723

RESUMEN

Microscopy has served as a fundamental tool for insight and discovery in plant-microbe interactions for centuries. From classical light and electron microscopy to corresponding specialized methods for sample preparation and cellular contrasting agents, these approaches have become routine components in the toolkit of plant and microbiology scientists alike to visualize, probe and understand the nature of host-microbe relationships. Over the last three decades, three-dimensional perspectives led by the development of electron tomography, and especially, confocal techniques continue to provide remarkable clarity and spatial detail of tissue and cellular phenomena. Confocal and electron microscopy provide novel revelations that are now commonplace in medium and large institutions. However, many other cutting-edge technologies and sample preparation workflows are relatively unexploited yet offer tremendous potential for unprecedented advancement in our understanding of the inner workings of pathogenic, beneficial, and symbiotic plant-microbe interactions. Here, we highlight key applications, benefits, and challenges of contemporary advanced imaging platforms for plant-microbe systems with special emphasis on several recently developed approaches, such as light-sheet, single molecule, super-resolution, and adaptive optics microscopy, as well as ambient and cryo-volume electron microscopy, X-ray microscopy, and cryo-electron tomography. Furthermore, the potential for complementary sample preparation methodologies, such as optical clearing, expansion microscopy, and multiplex imaging, will be reviewed. Our ultimate goal is to stimulate awareness of these powerful cutting-edge technologies and facilitate their appropriate application and adoption to solve important and unresolved biological questions in the field. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Microscopía por Crioelectrón , Interacciones Microbiota-Huesped , Plantas , Microscopía por Crioelectrón/métodos , Interacciones Microbiota-Huesped/fisiología , Plantas/microbiología
7.
Sci Adv ; 8(43): eabo7683, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36306367

RESUMEN

Photosynthesis in fruits is well documented, but its contribution to seed development and yield remains largely unquantified. In oilseeds, the pods are green and elevated with direct access to sunlight. With 13C labeling in planta and through an intact pod labeling system, a unique multi-tissue comprehensive flux model mechanistically described how pods assimilate up to one-half (33 to 45%) of seed carbon by proximal photosynthesis in Camelina sativa. By capturing integrated tissue metabolism, the studies reveal the contribution of plant architecture beyond leaves, to enable seed filling and maximize the number of viable seeds. The latent capacity of the pod wall in the absence of leaves contributes approximately 79% of seed biomass, supporting greater seed sink capacity and higher theoretical yields that suggest an opportunity for crop productivity gains.


Asunto(s)
Brassicaceae , Brassicaceae/metabolismo , Semillas/metabolismo , Fotosíntesis , Hojas de la Planta , Carbono/metabolismo
8.
Plant Direct ; 6(9): e439, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36186894

RESUMEN

Duckweeds are the smallest angiosperms, possessing a simple body architecture and highest rates of biomass accumulation. They can grow near-exponentially via clonal propagation. Understanding their reproductive biology, growth, and development is essential to unlock their potential for phytoremediation, carbon capture, and nutrition. However, there is a lack of non-laborious and convenient methods for spatially and temporally imaging an array of duckweed plants and growth conditions in the same experiment. We developed an automated microscopy approach to record time-lapse images of duckweed plants growing in 12-well cell culture plates. As a proof-of-concept experiment, we grew duckweed on semi-solid media with and without sucrose and monitored its effect on their growth over 3 days. Using the PlantCV toolkit, we quantified the thallus area of individual plantlets over time, and showed that L. minor grown on sucrose had an average growth rate four times higher than without sucrose. This method will serve as a blueprint to perform automated high-throughput growth assays for studying the development patterns of duckweeds from different species, genotypes, and conditions.

9.
Front Cell Dev Biol ; 10: 933376, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003147

RESUMEN

Volume electron microscopy, a powerful approach to generate large three-dimensional cell and tissue volumes at electron microscopy resolutions, is rapidly becoming a routine tool for understanding fundamental and applied biological questions. One of the enabling factors for its adoption has been the development of conventional fixation protocols with improved heavy metal staining. However, freeze-substitution with organic solvent-based fixation and staining has not realized the same level of benefit. Here, we report a straightforward approach including osmium tetroxide, acetone and up to 3% water substitution fluid (compatible with traditional or fast freeze-substitution protocols), warm-up and transition from organic solvent to aqueous 2% osmium tetroxide. Once fully hydrated, samples were processed in aqueous based potassium ferrocyanide, thiocarbohydrazide, osmium tetroxide, uranyl acetate and lead acetate before resin infiltration and polymerization. We observed a consistent and substantial increase in heavy metal staining across diverse and difficult-to-fix test organisms and tissue types, including plant tissues (Hordeum vulgare), nematode (Caenorhabditis elegans) and yeast (Saccharomyces cerevisiae). Our approach opens new possibilities to combine the benefits of cryo-preservation with enhanced contrast for volume electron microscopy in diverse organisms.

10.
Commun Biol ; 5(1): 460, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562408

RESUMEN

Different intensities of high temperatures affect the growth of photosynthetic cells in nature. To elucidate the underlying mechanisms, we cultivated the unicellular green alga Chlamydomonas reinhardtii under highly controlled photobioreactor conditions and revealed systems-wide shared and unique responses to 24-hour moderate (35°C) and acute (40°C) high temperatures and subsequent recovery at 25°C. We identified previously overlooked unique elements in response to moderate high temperature. Heat at 35°C transiently arrested the cell cycle followed by partial synchronization, up-regulated transcripts/proteins involved in gluconeogenesis/glyoxylate-cycle for carbon uptake and promoted growth. But 40°C disrupted cell division and growth. Both high temperatures induced photoprotection, while 40°C distorted thylakoid/pyrenoid ultrastructure, affected the carbon concentrating mechanism, and decreased photosynthetic efficiency. We demonstrated increased transcript/protein correlation during both heat treatments and hypothesize reduced post-transcriptional regulation during heat may help efficiently coordinate thermotolerance mechanisms. During recovery after both heat treatments, especially 40°C, transcripts/proteins related to DNA synthesis increased while those involved in photosynthetic light reactions decreased. We propose down-regulating photosynthetic light reactions during DNA replication benefits cell cycle resumption by reducing ROS production. Our results provide potential targets to increase thermotolerance in algae and crops.


Asunto(s)
Chlamydomonas reinhardtii , Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Calor , Plantas/metabolismo , Temperatura , Tilacoides/metabolismo
11.
Plants (Basel) ; 11(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35270055

RESUMEN

The unicellular green alga Chlamydomonas reinhardtii is an excellent model organism to investigate many essential cellular processes in photosynthetic eukaryotes. Two commonly used background strains of Chlamydomonas are CC-1690 and CC-5325. CC-1690, also called 21gr, has been used for the Chlamydomonas genome project and several transcriptome analyses. CC-5325 is the background strain for the Chlamydomonas Library Project (CLiP). Photosynthetic performance in CC-5325 has not been evaluated in comparison with CC-1690. Additionally, CC-5325 is often considered to be cell-wall deficient, although detailed analysis is missing. The circadian rhythms in CC-5325 are also unclear. To fill these knowledge gaps and facilitate the use of the CLiP mutant library for various screens, we performed phenotypic comparisons between CC-1690 and CC-5325. Our results showed that CC-5325 grew faster heterotrophically in dark and equally well in mixotrophic liquid medium as compared to CC-1690. CC-5325 had lower photosynthetic efficiency and was more heat-sensitive than CC-1690. Furthermore, CC-5325 had an intact cell wall which had comparable integrity to that in CC-1690 but appeared to have reduced thickness. Additionally, CC-5325 could perform phototaxis, but could not maintain a sustained circadian rhythm of phototaxis as CC1690 did. Finally, in comparison to CC-1690, CC-5325 had longer cilia in the medium with acetate but slower swimming speed in the medium without nitrogen and acetate. Our results will be useful for researchers in the Chlamydomonas community to choose suitable background strains for mutant analysis and employ the CLiP mutant library for genome-wide mutant screens under appropriate conditions, especially in the areas of photosynthesis, thermotolerance, cell wall, and circadian rhythms.

12.
Methods Mol Biol ; 2391: 153-170, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34686984

RESUMEN

Microscopic observation of root disease onset and progression is typically performed by harvesting different plants at multiple time points. This approach prevents the monitoring of individual encounter sites over time, often mechanically damages roots, and exposes roots to unnatural conditions during observation. Here, we describe a method developed to avoid these problems and its application to study Fusarium oxysporum-Arabidopsis thaliana interactions. This method enabled three-dimensional, time-lapse imaging of both A. thaliana and F. oxysporum as they interact via the use of confocal and multi-photon microscopy and facilitated inquiries about the genetic mechanism underpinning Fusarium wilt.


Asunto(s)
Imagen de Lapso de Tiempo , Arabidopsis , Proliferación Celular , Fusarium , Enfermedades de las Plantas , Raíces de Plantas
13.
Plant Physiol ; 188(2): 831-845, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618094

RESUMEN

Capturing complete internal anatomies of plant organs and tissues within their relevant morphological context remains a key challenge in plant science. While plant growth and development are inherently multiscale, conventional light, fluorescence, and electron microscopy platforms are typically limited to imaging of plant microstructure from small flat samples that lack a direct spatial context to, and represent only a small portion of, the relevant plant macrostructures. We demonstrate technical advances with a lab-based X-ray microscope (XRM) that bridge the imaging gap by providing multiscale high-resolution three-dimensional (3D) volumes of intact plant samples from the cell to the whole plant level. Serial imaging of a single sample is shown to provide sub-micron 3D volumes co-registered with lower magnification scans for explicit contextual reference. High-quality 3D volume data from our enhanced methods facilitate sophisticated and effective computational segmentation. Advances in sample preparation make multimodal correlative imaging workflows possible, where a single resin-embedded plant sample is scanned via XRM to generate a 3D cell-level map, and then used to identify and zoom in on sub-cellular regions of interest for high-resolution scanning electron microscopy. In total, we present the methodologies for use of XRM in the multiscale and multimodal analysis of 3D plant features using numerous economically and scientifically important plant systems.


Asunto(s)
Imagenología Tridimensional/estadística & datos numéricos , Microscopía Electrónica de Rastreo/instrumentación , Células Vegetales/ultraestructura , Plantas/ultraestructura , Rayos X
14.
Metab Eng ; 69: 231-248, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34920088

RESUMEN

The metabolic plasticity of tobacco leaves has been demonstrated via the generation of transgenic plants that can accumulate over 30% dry weight as triacylglycerols. In investigating the changes in carbon partitioning in these high lipid-producing (HLP) leaves, foliar lipids accumulated stepwise over development. Interestingly, non-transient starch was observed to accumulate with plant age in WT but not HLP leaves, with a drop in foliar starch concurrent with an increase in lipid content. The metabolic carbon tradeoff between starch and lipid was studied using 13CO2-labeling experiments and isotopically nonstationary metabolic flux analysis, not previously applied to the mature leaves of a crop. Fatty acid synthesis was investigated through assessment of acyl-acyl carrier proteins using a recently derived quantification method that was extended to accommodate isotopic labeling. Analysis of labeling patterns and flux modeling indicated the continued production of unlabeled starch, sucrose cycling, and a significant contribution of NADP-malic enzyme to plastidic pyruvate production for the production of lipids in HLP leaves, with the latter verified by enzyme activity assays. The results suggest an inherent capacity for a developmentally regulated carbon sink in tobacco leaves and may in part explain the uniquely successful leaf lipid engineering efforts in this crop.


Asunto(s)
Análisis de Flujos Metabólicos , Almidón , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Almidón/genética , Almidón/metabolismo , Nicotiana/metabolismo , Triglicéridos
15.
Plant Physiol ; 188(2): 703-712, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34726737

RESUMEN

Plant cells communicate information for the regulation of development and responses to external stresses. A key form of this communication is transcriptional regulation, accomplished via complex gene networks operating both locally and systemically. To fully understand how genes are regulated across plant tissues and organs, high resolution, multi-dimensional spatial transcriptional data must be acquired and placed within a cellular and organismal context. Spatial transcriptomics (ST) typically provides a two-dimensional spatial analysis of gene expression of tissue sections that can be stacked to render three-dimensional data. For example, X-ray and light-sheet microscopy provide sub-micron scale volumetric imaging of cellular morphology of tissues, organs, or potentially entire organisms. Linking these technologies could substantially advance transcriptomics in plant biology and other fields. Here, we review advances in ST and 3D microscopy approaches and describe how these technologies could be combined to provide high resolution, spatially organized plant tissue transcript mapping.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Fenómenos Fisiológicos de las Plantas/genética , Plantas/genética , Transducción de Señal/genética , Análisis Espacial , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Análisis de la Célula Individual
16.
Commun Biol ; 4(1): 1092, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531541

RESUMEN

C4 plants frequently experience high light and high temperature conditions in the field, which reduce growth and yield. However, the mechanisms underlying these stress responses in C4 plants have been under-explored, especially the coordination between mesophyll (M) and bundle sheath (BS) cells. We investigated how the C4 model plant Setaria viridis responded to a four-hour high light or high temperature treatment at photosynthetic, transcriptomic, and ultrastructural levels. Although we observed a comparable reduction of photosynthetic efficiency in high light or high temperature treated leaves, detailed analysis of multi-level responses revealed important differences in key pathways and M/BS specificity responding to high light and high temperature. We provide a systematic analysis of high light and high temperature responses in S. viridis, reveal different acclimation strategies to these two stresses in C4 plants, discover unique light/temperature responses in C4 plants in comparison to C3 plants, and identify potential targets to improve abiotic stress tolerance in C4 crops.


Asunto(s)
Calor/efectos adversos , Luz/efectos adversos , Fotosíntesis , Setaria (Planta)/metabolismo , Transcriptoma , Carbono/metabolismo , Fotosíntesis/efectos de la radiación , Setaria (Planta)/efectos de la radiación , Transcriptoma/efectos de la radiación
17.
Emerg Top Life Sci ; 5(2): 179-188, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33522561

RESUMEN

Single-cell RNA-seq is a tool that generates a high resolution of transcriptional data that can be used to understand regulatory networks in biological systems. In plants, several methods have been established for transcriptional analysis in tissue sections, cell types, and/or single cells. These methods typically require cell sorting, transgenic plants, protoplasting, or other damaging or laborious processes. Additionally, the majority of these technologies lose most or all spatial resolution during implementation. Those that offer a high spatial resolution for RNA lack breadth in the number of transcripts characterized. Here, we briefly review the evolution of spatial transcriptomics methods and we highlight recent advances and current challenges in sequencing, imaging, and computational aspects toward achieving 3D spatial transcriptomics of plant tissues with a resolution approaching single cells. We also provide a perspective on the potential opportunities to advance this novel methodology in plants.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Biología Computacional , Plantas/genética , Análisis de Secuencia de ARN , Transcriptoma/genética
18.
Fungal Genet Biol ; 149: 103540, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33607281

RESUMEN

Genetically encoded Ca2+ indicators (GECIs) enable long-term monitoring of cellular and subcellular dynamics of this second messenger in response to environmental and developmental cues without relying on exogenous dyes. Continued development and optimization in GECIs, combined with advances in gene manipulation, offer new opportunities for investigating the mechanism of Ca2+ signaling in fungi, ranging from documenting Ca2+ signatures under diverse conditions and genetic backgrounds to evaluating how changes in Ca2+ signature impact calcium-binding proteins and subsequent cellular changes. Here, we attempted to express multi-color (green, yellow, blue, cyan, and red) circularly permuted fluorescent protein (FP)-based Ca2+ indicators driven by multiple fungal promoters in Fusarium oxysporum, F. graminearum, and Neurospora crassa. Several variants were successfully expressed, with GCaMP5G driven by the Magnaporthe oryzae ribosomal protein 27 and F. verticillioides elongation factor-1α gene promoters being optimal for F. graminearum and F. oxysporum, respectively. Transformants expressing GCaMP5G were compared with those expressing YC3.60, a ratiometric Cameleon Ca2+ indicator. Wild-type and three Ca2+ signaling mutants of F. graminearum expressing GCaMP5G exhibited improved signal-to-noise and increased temporal and spatial resolution and are also more amenable to studies involving multiple FPs compared to strains expressing YC3.60.


Asunto(s)
Señalización del Calcio/genética , Calcio/metabolismo , Hongos/metabolismo , Ascomicetos/genética , Calcio/química , Señalización del Calcio/fisiología , Fusarium/genética , Indicadores y Reactivos/química , Proteínas Luminiscentes/genética , Neurospora crassa/genética
19.
Proc Natl Acad Sci U S A ; 117(27): 16043-16054, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571919

RESUMEN

In the indeterminate nodules of a model legume Medicago truncatula, ∼700 nodule-specific cysteine-rich (NCR) peptides with conserved cysteine signature are expressed. NCR peptides are highly diverse in sequence, and some of these cationic peptides exhibit antimicrobial activity in vitro and in vivo. However, there is a lack of knowledge regarding their structural architecture, antifungal activity, and modes of action against plant fungal pathogens. Here, the three-dimensional NMR structure of the 36-amino acid NCR044 peptide was solved. This unique structure was largely disordered and highly dynamic with one four-residue α-helix and one three-residue antiparallel ß-sheet stabilized by two disulfide bonds. NCR044 peptide also exhibited potent fungicidal activity against multiple plant fungal pathogens, including Botrytis cinerea and three Fusarium spp. It inhibited germination in quiescent spores of B. cinerea In germlings, it breached the fungal plasma membrane and induced reactive oxygen species. It bound to multiple bioactive phosphoinositides in vitro. Time-lapse confocal and superresolution microscopy revealed strong fungal cell wall binding, penetration of the cell membrane at discrete foci, followed by gradual loss of turgor, subsequent accumulation in the cytoplasm, and elevated levels in nucleoli of germlings. Spray-applied NCR044 significantly reduced gray mold disease symptoms caused by the fungal pathogen B. cinerea in tomato and tobacco plants, and postharvest products. Our work illustrates the antifungal activity of a structurally unique NCR peptide against plant fungal pathogens and paves the way for future development of this class of peptides as a spray-on fungistat/fungicide.


Asunto(s)
Antifúngicos/farmacología , Péptidos/metabolismo , Péptidos/farmacología , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacología , Simbiosis , Secuencia de Aminoácidos , Botrytis/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Cisteína/química , Fusarium/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Espectroscopía de Resonancia Magnética , Medicago truncatula/microbiología , Pichia/metabolismo , Enfermedades de las Plantas/microbiología , Nicotiana/metabolismo , Nicotiana/microbiología
20.
Fungal Genet Biol ; 111: 30-46, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29175365

RESUMEN

Similar to animals and plants, external stimuli cause dynamic spatial and temporal changes of cytoplasmic Ca2+ in fungi. Such changes are referred as the Ca2+ signature and control cellular responses by modulating the activity or location of diverse Ca2+-binding proteins (CBPs) and also indirectly affecting proteins that interact with CBPs. To understand the mechanism underpinning Ca2+ signaling, therefore, characterization of how Ca2+ moves to and from the cytoplasm to create Ca2+ signatures under different conditions is fundamental. Three genes encoding plasma membrane Ca2+ channels in a Fusarium graminearum strain that expresses a fluorescent protein-based Ca2+ indicator in the cytoplasm were mutagenized to investigate their roles in the generation of Ca2+ signatures under different growth conditions and genetic backgrounds. The genes disrupted include CCH1 and MID1, which encode a high affinity Ca2+ uptake system, and FIG1, encoding a low affinity Ca2+ channel. Resulting mutants were also analyzed for growth, development, pathogenicity and mycotoxin production to determine how loss of each of the genes alters these traits. To investigate whether individual genes influence the function and expression of other genes, phenotypes and Ca2+ signatures of their double and triple mutants, as well as their expression patterns, were analyzed.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Fusarium/metabolismo , Micotoxinas/biosíntesis , Canales de Calcio/genética , Fusarium/genética , Fusarium/crecimiento & desarrollo , Fusarium/patogenicidad , Genes Fúngicos , Hifa/crecimiento & desarrollo , Mutagénesis , Micotoxinas/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...