Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 23: 2001-2010, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38770160

RESUMEN

In a recent study, we have identified BPH03 as a promising scaffold for the development of compounds aimed at modulating the interaction between PED/PEA15 (Phosphoprotein Enriched in Diabetes/Phosphoprotein Enriched in Astrocytes 15) and PLD1 (phospholipase D1), with potential applications in type II diabetes therapy. PED/PEA15 is known to be overexpressed in certain forms of diabetes, where it binds to PLD1, thereby reducing insulin-stimulated glucose transport. The inhibition of this interaction reestablishes basal glucose transport, indicating PED as a potential target of ligands capable to recover glucose tolerance and insulin sensitivity. In this study, we employ computational methods to provide a detailed description of BPH03 interaction with PED, evidencing the presence of a hidden druggable pocket within its PLD1 binding surface. We also elucidate the conformational changes that occur during PED interaction with BPH03. Moreover, we report new NMR data supporting the in-silico findings and indicating that BPH03 disrupts the PED/PLD1 interface displacing PLD1 from its interaction with PED. Our study represents a significant advancement toward the development of potential therapeutics for the treatment of type II diabetes.

2.
Sci Rep ; 13(1): 20332, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989843

RESUMEN

Drug resistance is one of the most difficult challenges facing tuberculosis (TB) control. Drug efflux is among the mechanisms leading to drug resistance. In our previous studies, we partially characterized the ABC-type MSMEG-3762/63 efflux pump in Mycobacterium smegmatis, which shares high percentage of identity with the Mycobacterium tuberculosis Rv1687/86c pump. MSMEG-3762/63 was shown to have extrusion activity for rifampicin and ciprofloxacin, used in first and second-line anti-TB treatments. Moreover, we described the functional role of the TetR-like MSMEG-3765 protein as a repressor of the MSMEG_3762/63/65 operon and orthologous Rv1687/86/85c in M. tuberculosis. Here we show that the operon is upregulated in the macrophage environment, supporting a previous observation of induction triggered by acid-nitrosative stress. Expression of the efflux pump was also induced by sub-inhibitory concentrations of rifampicin or ciprofloxacin. Both these drugs also prevented the binding of the MSMEG-3765 TetR repressor protein to its operator in the MSMEG_3762/63/65 operon. The hypothesis that these two drugs might be responsible for the induction of the efflux pump operon was assessed by bioinformatics analyses. Docking studies using a structural model of the regulator MSMEG-3765 showed that both antibiotics abolished the ability of this transcriptional repressor to recognize the efflux pump operon by interacting with the homodimer at different binding sites within the same binding pocket. Reduced binding of the repressor leads to induction of the efflux pump in M. smegmatis, and reduced efficacy of these two anti-mycobacterial drugs.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Rifampin/farmacología , Rifampin/metabolismo , Mycobacterium smegmatis/metabolismo , Proteínas Bacterianas/metabolismo , Ciprofloxacina/farmacología , Ciprofloxacina/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo
3.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834166

RESUMEN

Proteins of the MucR/Ros family play a crucial role in bacterial infection or symbiosis with eukaryotic hosts. MucR from Sinorhizobium meliloti plays a regulatory role in establishing symbiosis with the host plant, both dependent and independent of Quorum Sensing. Here, we report the first characterization of MucR isolated from Sinorhizobium meliloti by mass spectrometry and demonstrate that this protein forms higher-order oligomers in its native condition of expression by SEC-MALS. We show that MucR purified from Sinorhizobium meliloti can bind DNA and recognize the region upstream of the ndvA gene in EMSA, revealing that this gene is a direct target of MucR. Although MucR DNA binding activity was already described, a detailed characterization of Sinorhizobium meliloti DNA targets has never been reported. We, thus, analyze sequences recognized by MucR in the rem gene promoter, showing that this protein recognizes AT-rich sequences and does not require a consensus sequence to bind DNA. Furthermore, we investigate the dependence of MucR DNA binding on the length of DNA targets. Taken together, our studies establish MucR from Sinorhizobium meliloti as a member of a new family of Histone-like Nucleoid Structuring (H-NS) proteins, thus explaining the multifaceted role of this protein in many species of alpha-proteobacteria.


Asunto(s)
Proteínas Represoras , Sinorhizobium meliloti , Proteínas Represoras/genética , Sinorhizobium meliloti/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Transcripción/metabolismo , ADN/genética , ADN/metabolismo , Simbiosis , Regulación Bacteriana de la Expresión Génica
4.
Molecules ; 28(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37049814

RESUMEN

The development of new formulations can be driven by the knowledge of host-guest complexes using cyclodextrins which have the ability to include guest molecules within their hydrophobic cavities, improving the physicochemical properties of the guest. To rationally explore new pesticide formulations, the effects of cyclodextrins on the properties of such guest molecules need to be explored. Imidacloprid is a neonicotinoid systemic insecticide used worldwide. In this study, the inclusion complexes of Imidacloprid (IMI) with ß-cyclodextrin (ß-CD) were prepared in the solid state by co-precipitation and the physical mixing method, with a stoichiometry of 1:1 and 1:2 molar ratios. The obtained products, Imidacloprid:ß-cyclodextrin inclusion complex (IMI:ß-CD), were characterized in the solid state by Fourier transform-infrared (FT-IR) spectroscopy and X-ray powder diffractometry (XRD). In solution, the 1:1 stoichiometry for the inclusion complexes was established by the Job plot method, and the binding constant of IMI:ß-CD was determined by UV-vis titration. The toxicity was determined in producers and primary consumers of the freshwater trophic chain, the green alga Raphidocelis subcapitata and the rotifer Brachionus calyciflorus, respectively. The results indicated that Imidacloprid forms inclusion complexes with CDs showing improved physicochemical properties compared to free Imidacloprid. The formation of the inclusion complex reduced the chronic toxicity in rotifers when IMI concentrations were close to those of environmental concern (tenths/hundredths of micromoles/L). Therefore, CD inclusion complexes could provide important advantages to be considered for the future industrial production of new formulations.


Asunto(s)
Ciclodextrinas , beta-Ciclodextrinas , Espectroscopía Infrarroja por Transformada de Fourier , beta-Ciclodextrinas/química , Ciclodextrinas/química , Neonicotinoides/toxicidad , Difracción de Rayos X , Rastreo Diferencial de Calorimetría , Solubilidad
5.
Molecules ; 28(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36771001

RESUMEN

Persistence and degradation are important factors in determining the safe use of such synthetic products, and numerous studies have been addressed to develop pesticide remediation methods aimed at ameliorating these features. In this frame, the use of different cyclodextrins (CDs) molecules has attracted considerable attention due to their well-known non-toxic nature, limited environmental impact, and capability to reduce the environmental and health risks of pesticides. CDs appear to be a valuable tool for the elimination of pesticides from polluted areas as well as for better pesticide formulations that positively influence their hydrolysis or degradation. The present work investigates the interaction between ß-cyclodextrins and three commonly used pesticides (i.e., chlorpropham, monuron, and propanil) both in solution and in the solid state by means of UV-Vis, FT-IR, and X-ray powder diffractometry. We show that such interactions result in all three cases in the formation of inclusion complexes with a 1:1 stoichiometry and binding constants (Kb) of 369.9 M-1 for chlorpropham, 292.3 M-1 for monuron, and 298.3 M-1 for propanil. We also report the energy-minimized structures in silico for each complex. Our data expand and complement the available literature data in indicating CDs as a low-cost and very effective tool capable of modulating the properties that determine the environmental fate of pesticides.


Asunto(s)
Ciclodextrinas , Plaguicidas , Propanil , beta-Ciclodextrinas , Plaguicidas/análisis , Clorprofam , Espectroscopía Infrarroja por Transformada de Fourier , beta-Ciclodextrinas/química , Ciclodextrinas/química , Solubilidad
6.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232306

RESUMEN

A strict interplay is known to involve copper and zinc in many cellular processes. For this reason, the results of copper's interaction with zinc binding proteins are of great interest. For instance, copper interferences with the DNA-binding activity of zinc finger proteins are associated with the development of a variety of diseases. The biological impact of copper depends on the chemical properties of its two common oxidation states (Cu(I) and Cu(II)). In this framework, following the attention addressed to unveil the effect of metal ion replacement in zinc fingers and in zinc-containing proteins, we explore the effects of the Zn(II) to Cu(I) or Cu(II) replacement in the prokaryotic zinc finger domain. The prokaryotic zinc finger protein Ros, involved in the horizontal transfer of genes from A. tumefaciens to a host plant infected by it, belongs to a family of proteins, namely Ros/MucR, whose members have been recognized in different bacteria symbionts and pathogens of mammals and plants. Interestingly, the amino acids of the coordination sphere are poorly conserved in most of these proteins, although their sequence identity can be very high. In fact, some members of this family of proteins do not bind zinc or any other metal, but assume a 3D structure similar to that of Ros with the residues replacing the zinc ligands, forming a network of hydrogen bonds and hydrophobic interactions that surrogates the Zn-coordinating role. These peculiar features of the Ros ZF domain prompted us to study the metal ion replacement with ions that have different electronic configuration and ionic radius. The protein was intensely studied as a perfectly suited model of a metal-binding protein to study the effects of the metal ion replacement; it appeared to tolerate the Zn to Cd substitution, but not the replacement of the wildtype metal by Ni(II), Pb(II) and Hg(II). The structural characterization reported here gives a high-resolution description of the interaction of copper with Ros, demonstrating that copper, in both oxidation states, binds the protein, but the replacement does not give rise to a functional domain.


Asunto(s)
Mercurio , Zinc , Aminoácidos , Cadmio , Cobre/química , ADN/metabolismo , Iones , Plomo , Proteínas , Zinc/metabolismo , Dedos de Zinc
7.
Chem Sci ; 13(35): 10406-10427, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277622

RESUMEN

The conformational conversion of the cellular prion protein (PrPC) into a misfolded, aggregated and infectious scrapie isoform is associated with prion disease pathology and neurodegeneration. Despite the significant number of experimental and theoretical studies the molecular mechanism regulating this structural transition is still poorly understood. Here, via Nuclear Magnetic Resonance (NMR) methodologies we investigate at the atomic level the mechanism of the human HuPrP(90-231) thermal unfolding and characterize the conformational equilibrium between its native structure and a ß-enriched intermediate state, named ß-PrPI. By comparing the folding mechanisms of metal-free and Cu2+-bound HuPrP(23-231) and HuPrP(90-231) we show that the coupling between the N- and C-terminal domains, through transient electrostatic interactions, is the key molecular process in tuning long-range correlated µs-ms dynamics that in turn modulate the folding process. Moreover, via thioflavin T (ThT)-fluorescence fibrillization assays we show that ß-PrPI is involved in the initial stages of PrP fibrillation, overall providing a clear molecular description of the initial phases of prion misfolding. Finally, we show by using Real-Time Quaking-Induced Conversion (RT-QuIC) that the ß-PrPI acts as a seed for the formation of amyloid aggregates with a seeding activity comparable to that of human infectious prions.

8.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36297323

RESUMEN

Asthma is characterized by chronic inflammation and a variable degree of airway hyperresponsiveness (AHR). Our previous papers documented a role for Nociceptin/Orphanin FQ (N/OFQ) and its receptor N/OFQ peptide (NOP) in AHR. Therefore, the aim of this study was to improve the bioavailability of N/OFQ by developing solid lipid nanoparticles (SLNs). N/OFQ-loaded SLNs were prepared by the Quasi Emulsion Solvent Diffusion (QESD) technique and then characterized. Brown Norway rats were sensitized to ovalbumin (OVA) and treated with an intratracheal administration of saline solution or N/OFQ-SLN. Then, 24 h after the last challenge, functional histological and molecular evaluations were performed. SLNs showed a mean diameter of 233 ± 0.03 nm, a polydispersity index (PDI) value around 0.28 ± 0.02 and a drug release percentage of 84.3. The in vitro release of N/OFQ from SLNs showed that the release of the peptide starts already after two hours of incubation. Animals receiving N/OFQ-SLN showed a significative decrease in allergen-induced AHR compared to the control group. These results showed the positive effects of N/OFQ-SLNs on the inflammatory process and on the mechanical properties of the airways, suggesting that the innovative nanotechnological approach may be therapeutically beneficial for asthmatic patients.

9.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409070

RESUMEN

An unprecedented effort to tackle the ongoing COVID-19 pandemic has characterized the activity of the global scientific community over the last two years. Hundreds of published studies have focused on the comprehension of the immune response to the virus and on the definition of the functional role of SARS-CoV-2 proteins. Proteins containing zinc fingers, both belonging to SARS-CoV-2 or to the host, play critical roles in COVID-19 participating in antiviral defenses and regulation of viral life cycle. Differentially expressed zinc finger proteins and their distinct activities could thus be important in determining the severity of the disease and represent important targets for drug development. Therefore, we here review the mechanisms of action of host and viral zinc finger proteins in COVID-19 as a contribution to the comprehension of the disease and also highlight strategies for therapeutic developments.


Asunto(s)
COVID-19 , Antivirales/farmacología , Humanos , Pandemias , SARS-CoV-2 , Zinc
10.
ACS Chem Biol ; 16(12): 2798-2807, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34825823

RESUMEN

The overexpression of PED/PEA15, the phosphoprotein enriched in diabetes/phosphoprotein enriched in the astrocytes 15 protein (here referred simply to as PED), observed in some forms of type II diabetes, reduces the transport of insulin-stimulated glucose by binding to the phospholipase D1 (PLD1). The inhibition of the PED/PLD1 interaction was shown to restore basal glucose transport, indicating PED as a pharmacological target for the development of drugs capable of improving insulin sensitivity and glucose tolerance. We here report the identification and selection of PED ligands by means of NMR screening of a library of small organic molecules, NMR characterization of the PED/PLD1 interaction in lysates of cells expressing PLD1, and modulation of such interactions using BPH03, the best selected ligand. Overall, we complement the available literature data by providing detailed information on the structural determinants of the PED/PLD1 interaction in a cellular lysate environment and indicate BPH03 as a precious scaffold for the development of novel compounds that are able to modulate such interactions with possible therapeutic applications in type II diabetes.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Astrocitos/química , Diabetes Mellitus Tipo 2/metabolismo , Fragmentos de Péptidos/química , Fosfolipasa D/química , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Transporte Biológico , Microambiente Celular , Glucosa , Humanos , Resistencia a la Insulina , Ligandos , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Termodinámica
11.
Sci Rep ; 10(1): 21067, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273582

RESUMEN

Downhill folding has been defined as a unique thermodynamic process involving a conformations ensemble that progressively loses structure with the decrease of protein stability. Downhill folders are estimated to be rather rare in nature as they miss an energetically substantial folding barrier that can protect against aggregation and proteolysis. We have previously demonstrated that the prokaryotic zinc finger protein Ros87 shows a bipartite folding/unfolding process in which a metal binding intermediate converts to the native structure through a delicate barrier-less downhill transition. Significant variation in folding scenarios can be detected within protein families with high sequence identity and very similar folds and for the same sequence by varying conditions. For this reason, we here show, by means of DSC, CD and NMR, that also in different pH and ionic strength conditions Ros87 retains its partly downhill folding scenario demonstrating that, at least in metallo-proteins, the downhill mechanism can be found under a much wider range of conditions and coupled to other different transitions. We also show that mutations of Ros87 zinc coordination sphere produces a different folding scenario demonstrating that the organization of the metal ion core is determinant in the folding process of this family of proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pliegue de Proteína , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Desplegamiento Proteico , Termodinámica
12.
Front Microbiol ; 11: 575828, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343518

RESUMEN

Multi-drug resistant tuberculosis (MDR-TB) represents a major health problem worldwide. Drug efflux and the activity of efflux transporters likely play important roles in the development of drug-tolerant and drug-resistant mycobacterial phenotypes. This study is focused on the action of a mycobacterial efflux pump as a mechanism of drug resistance. Previous studies demonstrated up-regulation of the TetR-like transcriptional regulator MSMEG_3765 in Mycobacterium smegmatis and its ortholog Rv1685c in Mycobacterium tuberculosis (Mtb) in acid-nitrosative stress conditions. MSMEG-3765 regulates the expression of the MSMEG_3762/63/65 operon, and of the orthologous region in Mtb (Rv1687c/86c/85c). MSMEG-3762 and Rv1687c are annotated as ATP-binding proteins, while MSMEG-3763 and Rv1686c are annotated as trans-membrane polypeptides, defining an ABC efflux pump in both M. smegmatis and Mtb. The two putative efflux systems share a high percentage of identity. To examine the role of the putative efflux system MSMEG-3762/63, we constructed and characterized a MSMEG-3763 deletion mutant in M. smegmatis (∆MSMEG_3763). By comparative analysis of wild type, knockout, and complemented strains, together with structural modeling and molecular docking bioinformatics analyses of the MSMEG-3763 trans-membrane protein, we define the protein complex MSMEG-3762/63 as an efflux pump. Moreover, we demonstrate involvement of this pump in biofilm development and in the extrusion of rifampicin and ciprofloxacin (CIP), antimicrobial drugs used in first- and second-line anti-TB therapies.

13.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167398

RESUMEN

The structural effects of zinc replacement by xenobiotic metal ions have been widely studied in several eukaryotic and prokaryotic zinc-finger-containing proteins. The prokaryotic zinc finger, that presents a bigger ßßßαα domain with a larger hydrophobic core with respect to its eukaryotic counterpart, represents a valuable model protein to study metal ion interaction with metallo-proteins. Several studies have been conducted on Ros87, the DNA binding domain of the prokaryotic zinc finger Ros, and have demonstrated that the domain appears to structurally tolerate Ni(II), albeit with important structural perturbations, but not Pb(II) and Hg(II), and it is in vitro functional when the zinc ion is replaced by Cd(II). We have previously shown that Ros87 unfolding is a two-step process in which a zinc binding intermediate converts to the native structure thorough a delicate downhill folding transition. Here, we explore the folding/unfolding behaviour of Ros87 coordinated to Co(II), Ni(II) or Cd(II), by UV-Vis, CD, DSC and NMR techniques. Interestingly, we show how the substitution of the native metal ion results in complete different folding scenarios. We found a two-state unfolding mechanism for Cd-Ros87 whose metal affinity Kd is comparable to the one obtained for the native Zn-Ros87, and a more complex mechanism for Co-Ros87 and Ni-Ros87, that show higher Kd values. Our data outline the complex cross-correlation between the protein-metal ion equilibrium and the folding mechanism proposing such an interplay as a key factor in the proper metal ion selection by a specific metallo-protein.


Asunto(s)
Cadmio/química , Cobalto/química , Níquel/química , Pliegue de Proteína/efectos de los fármacos , Proteínas Represoras , Zinc/química , Agrobacterium tumefaciens , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión/efectos de los fármacos , Cadmio/metabolismo , Cadmio/farmacología , Cobalto/metabolismo , Cobalto/farmacología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Níquel/metabolismo , Níquel/farmacología , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Espectrofotometría Ultravioleta , Termodinámica , Zinc/metabolismo , Dedos de Zinc
14.
Met Ions Life Sci ; 202020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32851833

RESUMEN

Zinc finger (ZF) domains, that represent the majority of the DNA-binding motifs in eukaryotes, are involved in several processes ranging from RNA packaging to transcriptional activation, regulation of apoptosis, protein folding and assembly, and lipid binding. While their amino acid composition varies from one domain to the other, a shared feature is the coordination of a zinc ion, with a structural role, by a different combination of cysteines and histidines. The classical zinc finger domain (also called Cys2His2) that represents the most common class, uses two cysteines and two histidines to coordinate the metal ion, and forms a compact ßßα architecture consisting in a ß-sheet and an α-helix. GAG-knuckle resembles the classical ZF, treble clef and zinc ribbon are also well represented in the human genome. Zinc fingers are also present in prokaryotes. The first prokaryotic ZF domain found in the transcriptional regulator Ros protein was identified in Agrobacterium tumefaciens. It shows a Cys2His2 metal ion coordination sphere and folds in a domain significantly larger than its eukaryotic counterpart arranged in a ßßßαα topology. Interestingly, this domain does not strictly require the metal ion coordination to achieve the functional fold. Here, we report what is known on the main classes of eukaryotic and prokarotic ZFs, focusing our attention to the role of the metal ion, the folding mechanism, and the DNA binding. The hypothesis of a horizontal gene transfer from prokaryotes to eukaryotes is also discussed.


Asunto(s)
Dedos de Zinc , Agrobacterium tumefaciens , Secuencia de Aminoácidos , Humanos , Proteínas , Zinc
15.
Sci Rep ; 10(1): 9283, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32518326

RESUMEN

Ros/MucR is a widespread family of bacterial zinc-finger (ZF) containing proteins that integrate multiple functions such as virulence, symbiosis and/or cell cycle transcription. NMR solution structure of Ros DNA-binding domain (region 56-142, i.e. Ros87) has been solved by our group and shows that the prokaryotic ZF domain shows interesting structural and functional features that differentiate it from its eukaryotic counterpart as it folds in a significantly larger zinc-binding globular domain. We have recently proposed a novel functional model for this family of proteins suggesting that they may act as H-NS-'like' gene silencers. Indeed, the N-terminal region of this family of proteins appears to be responsible for the formation of functional oligomers. No structural characterization of the Ros N-terminal domain (region 1-55) is available to date, mainly because of serious solubility problems of the full-length protein. Here we report the first structural characterization of the N-terminal domain of the prokaryotic ZF family examining by means of MD and NMR the structural preferences of the full-length Ros protein from Agrobacterium tumefaciens.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Proteínas de Unión al ADN/genética , Dominios Proteicos , Estructura Secundaria de Proteína/genética , Dedos de Zinc/genética , Agrobacterium tumefaciens/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular
16.
ChemMedChem ; 15(3): 302-316, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31797568

RESUMEN

Proteasome malfunction parallels abnormal amyloid accumulation in Alzheimer's Disease (AD). Here we scrutinize a small library of pyrazolones by assaying their ability to enhance proteasome activity and protect neuronal cells from amyloid toxicity. Tube tests evidenced that aminopyrine and nifenazone behave as 20S proteasome activators. Enzyme assays carried out on an "open gate" mutant (α3ΔN) proteasome demonstrated that aminopyrine activates proteasome through binding the α-ring surfaces and influencing gating dynamics. Docking studies coupled with STD-NMR experiments showed that H-bonds and π-π stacking interactions between pyrazolones and the enzyme play a key role in bridging α1 to α2 and, alternatively, α5 to α6 subunits of the outer α-ring. Aminopyrine and nifenazone exhibit neurotrophic properties and protect differentiated human neuroblastoma SH-SY5Y cells from ß-amyloid (Aß) toxicity. ESI-MS studies confirmed that aminopyrine enhances Aß degradation by proteasome in a dose-dependent manner. Our results suggest that some pyrazolones and, in particular, aminopyrine are promising compounds for the development of proteasome activators for AD treatment.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Complejo de la Endopetidasa Proteasomal/metabolismo , Pirazolonas/farmacología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Complejo de la Endopetidasa Proteasomal/genética , Pirazolonas/química , Relación Estructura-Actividad
17.
Dalton Trans ; 48(40): 15184-15191, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31573025

RESUMEN

The utilization of isotopes of transition metals for the development of novel therapeutic or diagnostic compounds is limited by the fact that they must be stabilized by chelating systems in coordination complexes. Important roles in the targeting approach are played by the tricarbonyl complexes of Technetium(i) and Rhenium(i) because they can be readily conjugated to biomolecules to form stable probes. Additionally, 67Ga and 68Ga isotopes of gallium are considered an obvious alternative to 99mTc (M. D. Bartholomä, A. S. Louie, J. F. Valliant and J. Zubieta, Chem. Rev., 2010, 110, 2903-2920) for SPECT and PET applications. We have previously reported the characterization of the peptide CCK8 decorated with a bis-histidine-based chelator (pHis2) labeled with 99mTc-tricarbonyl. In order to study the molecular properties of the histidine-based chelator pHis2, we here present the characterization in solution of its complexes with the metals Re(i) and Ga(iii) using potentiometry and NMR. We detail the solution equilibria reporting pHis2 acid-base behavior, the coordination properties of pHis2 toward fac-[Re(H2O)3(CO)3]+ and Ga(iii) and the atomic details of the formed complexes. Interestingly, two different metal coordination modes were found highlighting the plasticity of this bifunctional chelator.

18.
Inorg Chem ; 58(2): 1067-1080, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30596504

RESUMEN

Zinc ion binding is a principal event in the achievement of the correct fold in classical zinc finger domains since the motif is largely unfolded in the absence of metal. In the case of a prokaryotic zinc finger, the larger ßßßαα domain contributes to the folding mechanism with a larger hydrophobic core. For these reasons, following the great amount of attention devoted to unveiling the effect of xenobiotic metal ion replacement in zinc fingers and in zinc-containing proteins in general, the prokaryotic zinc finger domain appears to be an interesting model for studying metal ion interaction with metalloproteins. Here, we explore the binding of Ni(II), Hg(II), and Pb(II) to Ros87, the DNA binding domain of the prokaryotic zinc finger protein Ros. We measured Ros87-metal ion dissociation constants and monitored the effects on the structure and function of the domain. Interestingly, we found that the protein folds in the presence of Ni(II) with important structural perturbations, while in the presence of Pb(II) and Hg(II) it does not appear to be significantly folded. Accordingly, an overall strong reduction in the DNA binding capability is observed for all of the examined proteins. Our data integrate and complement the information collected in the past few years concerning the functional and structural effects of metal ion substitution in classical zinc fingers in order to contribute to a better comprehension of the toxicity of these metals in biological systems.


Asunto(s)
Plomo/química , Mercurio/química , Metaloproteínas/química , Níquel/química , Sitios de Unión , Modelos Moleculares , Dedos de Zinc
19.
Sci Rep ; 8(1): 17238, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30467359

RESUMEN

MucR is a member of the Ros/MucR family of prokaryotic zinc-finger proteins found in the α-proteobacteria which regulate the expression of genes required for the successful pathogenic and symbiotic interactions of these bacteria with the eukaryotic hosts. The structure and function of their distinctive zinc-finger domain has been well-studied, but only recently the quaternary structure of the full length proteins was investigated demonstrating their ability to form higher-order oligomers. The aim of this study was to identify the region of MucR involved in higher-order oligomer formation by analysing deletion and point mutants of this protein by Light Scattering, and to determine the role that MucR oligomerization plays in the regulatory function of this protein. Here we demonstrate that a conserved hydrophobic region at the N-terminus of MucR is responsible for higher-order oligomer formation and that MucR oligomerization is essential for its regulatory function in Brucella. All these features of MucR are shared by the histone-like nucleoid structuring protein, (H-NS), leading us to propose that the prokaryotic zinc-finger proteins in the MucR/Ros family control gene expression employing a mechanism similar to that used by the H-NS proteins, rather than working as classical transcriptional regulators.


Asunto(s)
Proteínas Bacterianas/genética , Brucella abortus/genética , Regulación Bacteriana de la Expresión Génica/genética , ADN Bacteriano/genética , Eliminación de Gen , Mutación Puntual/genética , Células Procariotas/fisiología , Dedos de Zinc/genética
20.
Molecules ; 23(9)2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181476

RESUMEN

Lactobacillus plantarum is one of the most predominant species in the human gut microbiota of healthy individuals. We have previously characterized some probiotic features of L. plantarum LM3, as the high resistance to different stress, the binding ability toward some extracellular matrix proteins and plasminogen and the immunomodulatory role of the surface expressed adhesin EnoA1. We have also identified the flmA, flmB and flmC genes, coding for putative proteins named FlmA, FlmB and FlmC, whose null mutations partially impaired biofilm development; the L. plantarum LM3⁻6 strain, carrying a deletion in flmC, showed a high rate of autolysis, supporting the hypothesis that FlmC might be involved in cell wall integrity. Here, we report the in-silico characterization of ΔTM-FlmC, a portion of the FlmC protein. The protein has been also expressed, purified and characterized by means of CD spectroscopy, ICP-mass and UHPLC-HRMS. The obtained experimental data validated the predicted model unveiling also the presence of a bound lipid molecule and of a Mg(II) ion. Overall, we provide strong evidences that ΔTM-FlmC belongs to the LytR-CpsA-Psr (LCP) family of domains and is involved in cell envelope biogenesis.


Asunto(s)
Proteínas Bacterianas/química , Biopelículas/crecimiento & desarrollo , Lactobacillus plantarum/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dicroismo Circular , Iones , Lípidos/química , Magnesio/química , Simulación del Acoplamiento Molecular , Proteínas Mutantes/química , Agregado de Proteínas , Dominios Proteicos , Reproducibilidad de los Resultados , Análisis de Secuencia de Proteína , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...