Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Emerg Infect Dis ; 29(7): 1386-1396, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37308158

RESUMEN

Isolating and characterizing emerging SARS-CoV-2 variants is key to understanding virus pathogenesis. In this study, we isolated samples of the SARS-CoV-2 R.1 lineage, categorized as a variant under monitoring by the World Health Organization, and evaluated their sensitivity to neutralizing antibodies and type I interferons. We used convalescent serum samples from persons in Canada infected either with ancestral virus (wave 1) or the B.1.1.7 (Alpha) variant of concern (wave 3) for testing neutralization sensitivity. The R.1 isolates were potently neutralized by both the wave 1 and wave 3 convalescent serum samples, unlike the B.1.351 (Beta) variant of concern. Of note, the R.1 variant was significantly more resistant to type I interferons (IFN-α/ß) than was the ancestral isolate. Our study demonstrates that the R.1 variant retained sensitivity to neutralizing antibodies but evolved resistance to type I interferons. This critical driving force will influence the trajectory of the pandemic.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , SARS-CoV-2/genética , Interferón Tipo I/genética , Anticuerpos Neutralizantes , Sueroterapia para COVID-19 , Canadá/epidemiología , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
2.
PLoS Pathog ; 19(6): e1011485, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37384813

RESUMEN

Mucosa-associated invariant T (MAIT) cells are MR1-restricted, innate-like T lymphocytes with tremendous antibacterial and immunomodulatory functions. Additionally, MAIT cells sense and respond to viral infections in an MR1-independent fashion. However, whether they can be directly targeted in immunization strategies against viral pathogens is unclear. We addressed this question in multiple wild-type and genetically altered but clinically relevant mouse strains using several vaccine platforms against influenza viruses, poxviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), a riboflavin-based MR1 ligand of bacterial origin, can synergize with viral vaccines to expand MAIT cells in multiple tissues, reprogram them towards a pro-inflammatory MAIT1 phenotype, license them to bolster virus-specific CD8+ T cell responses, and potentiate heterosubtypic anti-influenza protection. Repeated 5-OP-RU administration did not render MAIT cells anergic, thus allowing for its inclusion in prime-boost immunization protocols. Mechanistically, tissue MAIT cell accumulation was due to their robust proliferation, as opposed to altered migratory behavior, and required viral vaccine replication competency and Toll-like receptor 3 and type I interferon receptor signaling. The observed phenomenon was reproducible in female and male mice, and in both young and old animals. It could also be recapitulated in a human cell culture system in which peripheral blood mononuclear cells were exposed to replicating virions and 5-OP-RU. In conclusion, although viruses and virus-based vaccines are devoid of the riboflavin biosynthesis machinery that supplies MR1 ligands, targeting MR1 enhances the efficacy of vaccine-elicited antiviral immunity. We propose 5-OP-RU as a non-classic but potent and versatile vaccine adjuvant against respiratory viruses.


Asunto(s)
COVID-19 , Células T Invariantes Asociadas a Mucosa , Vacunas , Femenino , Masculino , Humanos , Ratones , Animales , Eficacia de las Vacunas , Leucocitos Mononucleares , COVID-19/metabolismo , SARS-CoV-2 , Riboflavina/metabolismo , Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Menor
5.
NPJ Vaccines ; 8(1): 25, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823425

RESUMEN

Viral-vectored vaccines are highly amenable for respiratory mucosal delivery as a means of inducing much-needed mucosal immunity at the point of pathogen entry. Unfortunately, current monovalent viral-vectored tuberculosis (TB) vaccine candidates have failed to demonstrate satisfactory clinical protective efficacy. As such, there is a need to develop next-generation viral-vectored TB vaccine strategies which incorporate both vaccine antigen design and delivery route. In this study, we have developed a trivalent chimpanzee adenoviral-vectored vaccine to provide protective immunity against pulmonary TB through targeting antigens linked to the three different growth phases (acute/chronic/dormancy) of Mycobacterium tuberculosis (M.tb) by expressing an acute replication-associated antigen, Ag85A, a chronically expressed virulence-associated antigen, TB10.4, and a dormancy/resuscitation-associated antigen, RpfB. Single-dose respiratory mucosal immunization with our trivalent vaccine induced robust, sustained tissue-resident multifunctional CD4+ and CD8+ T-cell responses within the lung tissues and airways, which were further quantitatively and qualitatively improved following boosting of subcutaneously BCG-primed hosts. Prophylactic and therapeutic immunization with this multivalent trivalent vaccine in conventional BALB/c mice provided significant protection against not only actively replicating M.tb bacilli but also dormant, non-replicating persisters. Importantly, when used as a booster, it also provided marked protection in the highly susceptible C3HeB/FeJ mice, and a single respiratory mucosal inoculation was capable of significant protection in a humanized mouse model. Our findings indicate the great potential of this next-generation TB vaccine strategy and support its further clinical development for both prophylactic and therapeutic applications.

6.
Nat Rev Immunol ; 23(6): 381-396, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36536068

RESUMEN

Neutralizing antibodies are known to have a crucial role in protecting against SARS-CoV-2 infection and have been suggested to be a useful correlate of protection for vaccine clinical trials and for population-level surveys. In addition to neutralizing virus directly, antibodies can also engage immune effectors through their Fc domains, including Fc receptor-expressing immune cells and complement. The outcome of these interactions depends on a range of factors, including antibody isotype-Fc receptor combinations, Fc receptor-bearing cell types and antibody post-translational modifications. A growing body of evidence has shown roles for these Fc-dependent antibody effector functions in determining the outcome of SARS-CoV-2 infection. However, measuring these functions is more complicated than assays that measure antibody binding and virus neutralization. Here, we examine recent data illuminating the roles of Fc-dependent antibody effector functions in the context of SARS-CoV-2 infection, and we discuss the implications of these data for the development of next-generation SARS-CoV-2 vaccines and therapeutics.


Asunto(s)
COVID-19 , Humanos , Vacunas contra la COVID-19 , Anticuerpos Antivirales , SARS-CoV-2 , Anticuerpos Neutralizantes , Fragmentos Fc de Inmunoglobulinas , Receptores Fc
7.
Nat Immunol ; 23(12): 1687-1702, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36456739

RESUMEN

Aside from centrally induced trained immunity in the bone marrow (BM) and peripheral blood by parenteral vaccination or infection, evidence indicates that mucosal-resident innate immune memory can develop via a local inflammatory pathway following mucosal exposure. However, whether mucosal-resident innate memory results from integrating distally generated immunological signals following parenteral vaccination/infection is unclear. Here we show that subcutaneous Bacillus Calmette-Guérin (BCG) vaccination can induce memory alveolar macrophages (AMs) and trained immunity in the lung. Although parenteral BCG vaccination trains BM progenitors and circulating monocytes, induction of memory AMs is independent of circulating monocytes. Rather, parenteral BCG vaccination, via mycobacterial dissemination, causes a time-dependent alteration in the intestinal microbiome, barrier function and microbial metabolites, and subsequent changes in circulating and lung metabolites, leading to the induction of memory macrophages and trained immunity in the lung. These data identify an intestinal microbiota-mediated pathway for innate immune memory development at distal mucosal tissues and have implications for the development of next-generation vaccine strategies against respiratory pathogens.


Asunto(s)
Vacuna BCG , Macrófagos Alveolares , Inmunidad Entrenada , Pulmón , Vacunación , Inmunidad Innata
8.
STAR Protoc ; 3(3): 101652, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36065292

RESUMEN

Vaccination route dictates the quality and localization of immune responses within tissues. Intranasal vaccination seeds tissue-resident adaptive immunity, alongside trained innate responses within the lung/airways, critical for superior protection against SARS-CoV-2. This protocol encompasses intranasal vaccination in mice, step-by-step bronchoalveolar lavage for both cellular and acellular airway components, lung mononuclear cell isolation, and detailed flow cytometric characterization of lung tissue-resident memory T cell responses, and airway macrophage-trained innate immunity. For complete details on the use and execution of this protocol, please refer to Afkhami et al. (2022).


Asunto(s)
COVID-19 , Células T de Memoria , Animales , COVID-19/prevención & control , Inmunidad Innata , Pulmón , Ratones , SARS-CoV-2 , Vacunación/métodos
9.
Cell Rep Med ; 3(8): 100718, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977467

RESUMEN

The conserved hemagglutinin stalk domain is an attractive target for broadly effective antibody-based therapeutics and next-generation universal influenza vaccines. Protection provided by hemagglutinin stalk-binding antibodies is principally mediated through activation of immune effector cells. Titers of stalk-binding antibodies are highly variable on an individual level and tend to increase with age as a result of increasing exposures to influenza virus. In our study, we show that stalk-binding antibodies cooperate with neuraminidase inhibitors to protect against influenza virus infection in an Fc-dependent manner. These data suggest that the effectiveness of neuraminidase inhibitors is likely influenced by an individual's titers of stalk-binding antibodies and that neuraminidase inhibitors may enhance the effectiveness of future stalk-binding monoclonal antibody-based treatments.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Orthomyxoviridae , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Hemaglutininas , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Gripe Humana/tratamiento farmacológico , Neuraminidasa
10.
Front Immunol ; 13: 860399, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757753

RESUMEN

Infectious diseases of the respiratory tract are one of the top causes of global morbidity and mortality with lower respiratory tract infections being the fourth leading cause of death. The respiratory mucosal (RM) route of vaccine delivery represents a promising strategy against respiratory infections. Although both intranasal and inhaled aerosol methods have been established for human application, there is a considerable knowledge gap in the relationship of vaccine biodistribution to immune efficacy in the lung. Here, by using a murine model and an adenovirus-vectored model vaccine, we have compared the intranasal and endotracheal delivery methods in their biodistribution, immunogenicity and protective efficacy. We find that compared to intranasal delivery, the deepened and widened biodistribution in the lung following endotracheal delivery is associated with much improved vaccine-mediated immunogenicity and protection against the target pathogen. Our findings thus support further development of inhaled aerosol delivery of vaccines over intranasal delivery for human application.


Asunto(s)
Adenoviridae , Vacunas Virales , Adenoviridae/genética , Aerosoles , Animales , Humanos , Pulmón , Ratones , Distribución Tisular
11.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35180381

RESUMEN

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Inmunidad Mucosa , Administración Intranasal , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Citocinas/sangre , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Vectores Genéticos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pruebas de Neutralización , Nucleocápside/genética , Nucleocápside/inmunología , Nucleocápside/metabolismo , Pan troglodytes , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
12.
iScience ; 24(5): 102477, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33937724

RESUMEN

Type I interferons (IFNs) are our first line of defense against virus infection. Recent studies have suggested the ability of SARS-CoV-2 proteins to inhibit IFN responses. Emerging data also suggest that timing and extent of IFN production is associated with manifestation of COVID-19 severity. In spite of progress in understanding how SARS-CoV-2 activates antiviral responses, mechanistic studies into wild-type SARS-CoV-2-mediated induction and inhibition of human type I IFN responses are scarce. Here we demonstrate that SARS-CoV-2 infection induces a type I IFN response in vitro and in moderate cases of COVID-19. In vitro stimulation of type I IFN expression and signaling in human airway epithelial cells is associated with activation of canonical transcriptions factors, and SARS-CoV-2 is unable to inhibit exogenous induction of these responses. Furthermore, we show that physiological levels of IFNα detected in patients with moderate COVID-19 is sufficient to suppress SARS-CoV-2 replication in human airway cells.

13.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34050027

RESUMEN

Recombinant influenza virus vaccines based on hemagglutinin (HA) hold the potential to accelerate production timelines and improve efficacy relative to traditional egg-based platforms. Here, we assess a vaccine adjuvant system comprised of immunogenic liposomes that spontaneously convert soluble antigens into a particle format, displayed on the bilayer surface. When trimeric H3 HA was presented on liposomes, antigen delivery to macrophages was improved in vitro, and strong functional antibody responses were induced following intramuscular immunization of mice. Protection was conferred against challenge with a heterologous strain of H3N2 virus, and naive mice were also protected following passive serum transfer. When admixed with the particle-forming liposomes, immunization reduced viral infection severity at vaccine doses as low as 2 ng HA, highlighting dose-sparing potential. In ferrets, immunization induced neutralizing antibodies that reduced the upper respiratory viral load upon challenge with a more modern, heterologous H3N2 viral strain. To demonstrate the flexibility and modular nature of the liposome system, 10 recombinant surface antigens representing distinct influenza virus strains were bound simultaneously to generate a highly multivalent protein particle that with 5 ng individual antigen dosing induced antibodies in mice that specifically recognized the constituent immunogens and conferred protection against heterologous H5N1 influenza virus challenge. Taken together, these results show that stable presentation of recombinant HA on immunogenic liposome surfaces in an arrayed fashion enhances functional immune responses and warrants further attention for the development of broadly protective influenza virus vaccines.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Liposomas , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Relación Dosis-Respuesta Inmunológica , Hurones , Ratones
14.
Front Immunol ; 11: 557809, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013927

RESUMEN

Chemotherapeutic intervention remains the primary strategy in treating and controlling tuberculosis (TB). However, a complex interplay between therapeutic and patient-related factors leads to poor treatment adherence. This in turn continues to give rise to unacceptably high rates of disease relapse and the growing emergence of drug-resistant forms of TB. As such, there is considerable interest in strategies that simultaneously improve treatment outcome and shorten chemotherapy duration. Therapeutic vaccines represent one such approach which aims to accomplish this through boosting and/or priming novel anti-TB immune responses to accelerate disease resolution, shorten treatment duration, and enhance treatment success rates. Numerous therapeutic vaccine candidates are currently undergoing pre-clinical and clinical assessment, showing varying degrees of efficacy. By dissecting the underlying mechanisms/correlates of their successes and/or shortcomings, strategies can be identified to improve existing and future vaccine candidates. This mini-review will discuss the current understanding of therapeutic TB vaccine candidates, and discuss major strategies that can be implemented in advancing their development.


Asunto(s)
Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/prevención & control , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple , Humanos , Inmunoterapia , Mycobacterium tuberculosis/fisiología , Medicina de Precisión , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunología/métodos
15.
J Immunol ; 205(10): 2750-2762, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32998983

RESUMEN

Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis (TB), is responsible for millions of infections and deaths annually. Decades of TB vaccine development have focused on adaptive T cell immunity, whereas the importance of innate immune contributions toward vaccine efficacy has only recently been recognized. Airway macrophages (AwM) are the predominant host cell during early pulmonary M. tuberculosis infection and, therefore, represent attractive targets for vaccine-mediated immunity. We have demonstrated that respiratory mucosal immunization with a viral-vectored vaccine imprints AwM, conferring enhanced protection against heterologous bacterial challenge. However, it is unknown if innate immune memory also protects against M. tuberculosis In this study, by using a murine model, we detail whether respiratory mucosal TB vaccination profoundly alters the airway innate immune landscape associated with AwM prior to M. tuberculosis exposure and whether such AwM play a critical role in host defense against M. tuberculosis infection. Our study reveals an important role of AwM in innate immune protection in early stages of M. tuberculosis infection in the lung.


Asunto(s)
Inmunidad Innata , Macrófagos Alveolares/inmunología , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Tuberculosis Pulmonar/inmunología , Administración a través de la Mucosa , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/prevención & control , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
16.
Sci Rep ; 10(1): 13349, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770018

RESUMEN

Effective vaccine delivery and coverage to rural and resource-poor countries is hindered by the dependence on cold chain storage. As such, developments of cold chain-free technologies are highly sought. Although spray dried adenoviral vectors have shown long term stability at ambient temperatures and relatively low humidity, it remains to be determined whether similar excipient formulations are applicable to other viral vectors. To address this, we have spray dried vesicular stomatitis virus (VSV)-vectors with a panel of well-characterized sugar excipients to determine the optimal formulation for vector stabilization. Upon reconstitution, we show that trehalose conferred superior stability of VSV both in vitro and in vivo. Importantly, following cold chain-free storage at elevated temperatures at 37 °C for 15 days, we show that a VSV-vectored vaccine retains its in vivo immunogenicity, whereas a liquid control completely lost its immune-stimulating ability. Our results provide foundational evidence that spray drying with properly tested excipients can stabilize viral vectors such as VSV, allowing them to be stored long-term at elevated temperatures without dependency on cold chain conditions.


Asunto(s)
Vacunas/química , Vesiculovirus/química , Desecación/métodos , Estabilidad de Medicamentos , Excipientes/química , Calor , Humedad , Manitol/química , Polvos/química , Refrigeración/métodos , Temperatura , Trehalosa/química
17.
J Leukoc Biol ; 108(3): 825-834, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32125045

RESUMEN

In the past few years, our understanding of immunological memory has evolved remarkably due to a growing body of new knowledge in innate immune memory and immunity. Immunological memory now encompasses both innate and adaptive immune memory. The hypo-reactive and hyper-reactive types of innate immune memory lead to a suppressed and enhanced innate immune protective outcome, respectively. The latter is also named trained innate immunity (TII). The emerging information on innate immune memory has not only shed new light on the mechanisms of host defense but is also revolutionizing our long-held view of vaccination and vaccine strategies. Our current review will examine recent progress and knowledge gaps in innate immune memory with a focus on tissue-resident Mϕs, particularly lung Mϕs, and their relationship to local antimicrobial innate immunity. We will also discuss the impact of innate immune memory and TII on our understanding of vaccine concept and strategies and the significance of respiratory mucosal route of vaccination against respiratory pathogens.


Asunto(s)
Inmunidad Innata/inmunología , Inmunogenicidad Vacunal/inmunología , Macrófagos/inmunología , Vacunas/inmunología , Inmunidad Adaptativa/inmunología , Administración por Inhalación , Administración a través de la Mucosa , Animales , Vacuna BCG/inmunología , Humanos , Memoria Inmunológica/inmunología , Gripe Humana/inmunología , Pulmón/inmunología , Macrófagos Alveolares/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Modelos Inmunológicos , Mucosa Respiratoria/inmunología , Sobreinfección/inmunología , Tuberculosis/inmunología , Vacunación/métodos , Vacunas/administración & dosificación
18.
Front Immunol ; 10: 2075, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552032

RESUMEN

Tissue-resident memory T cells (TRM) are critical to host defense at mucosal tissue sites. However, the parenteral route of immunization as the most commonly used immunization route in practice is not effective in inducing mucosal TRM cells particularly in the lung. While various respiratory mucosal (RM)-pull strategies are exploited to mobilize parenteral vaccine-primed T cells into the lung, whether such RM-pull strategies can all or differentially induce Ag-specific TRM cells in the lung remains unclear. Here, we have addressed this issue by using a parenteral TB vaccine-primed and RM-pull model. We show that both Ag-independent and Ag-dependent RM-pull strategies are able to mobilize Ag-specific CD8 T cells into the lung. However, only the RM-pull strategy with cognate antigens can induce robust Ag-specific CD8 TRM cells in the lung. We also show that the cognate Ag-based RM-pull strategy is the most effective in inducing TRM cells when carried out during the memory phase, as opposed to the effector phase, of T cell responses to parenteral prime vaccination. We further find that cognate Ag-induced CD4 T cells play an important role in the development of CD8 TRM cells in the lung. Our study holds implications in developing effective vaccine strategies against respiratory pathogens.


Asunto(s)
Antígenos Bacterianos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Interacciones Huésped-Patógeno/inmunología , Memoria Inmunológica , Membrana Mucosa/inmunología , Vacunas contra la Tuberculosis/inmunología , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Citocinas/metabolismo , Femenino , Inmunización , Mediadores de Inflamación/metabolismo , Activación de Linfocitos/inmunología , Ratones , Membrana Mucosa/metabolismo , Mycobacterium tuberculosis/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
19.
J Infect Dis ; 220(8): 1355-1366, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31198944

RESUMEN

BACKGROUND: The development of strategies to accelerate disease resolution and shorten antibiotic therapy is imperative in curbing the global tuberculosis epidemic. Therapeutic application of novel vaccines adjunct to antibiotics represents such a strategy. METHODS: By using a murine model of pulmonary tuberculosis (TB), we have investigated whether a single respiratory mucosal therapeutic delivery of a novel chimpanzee adenovirus-vectored vaccine expressing Ag85A (AdCh68Ag85A) accelerates TB disease control in conjunction with antibiotics and restricts pulmonary disease rebound after premature (nonsterilizing) antibiotic cessation. RESULTS: We find that immunotherapy via the respiratory mucosal, but not parenteral, route significantly accelerates pulmonary mycobacterial clearance, limits lung pathology, and restricts disease rebound after premature antibiotic cessation. We further show that vaccine-activated antigen-specific T cells, particularly CD8 T cells, in the lung play an important role in immunotherapeutic effects. CONCLUSIONS: Our results indicate that a single-dose respiratory mucosal immunotherapy with AdCh68Ag85A adjunct to antibiotic therapy has the potential to significantly accelerate disease control and shorten the duration of conventional treatment. Our study provides the proof of principle to support therapeutic applications of viral-vectored vaccines via the respiratory route.


Asunto(s)
Antituberculosos/uso terapéutico , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Tuberculosis Pulmonar/terapia , Vacunación/métodos , Aciltransferasas/genética , Aciltransferasas/inmunología , Adenoviridae/genética , Administración Intranasal , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Terapia Combinada/métodos , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/genética , Humanos , Esquemas de Inmunización , Inyecciones Intramusculares , Ratones , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Mucosa Nasal , Pan troglodytes/virología , Prueba de Estudio Conceptual , Vacunas contra la Tuberculosis/genética , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/microbiología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...