Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Clin Med ; 13(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38592057

RESUMEN

(1) Background: SeptiCyte RAPID is a molecular test for discriminating sepsis from non-infectious systemic inflammation, and for estimating sepsis probabilities. The objective of this study was the clinical validation of SeptiCyte RAPID, based on testing retrospectively banked and prospectively collected patient samples. (2) Methods: The cartridge-based SeptiCyte RAPID test accepts a PAXgene blood RNA sample and provides sample-to-answer processing in ~1 h. The test output (SeptiScore, range 0-15) falls into four interpretation bands, with higher scores indicating higher probabilities of sepsis. Retrospective (N = 356) and prospective (N = 63) samples were tested from adult patients in ICU who either had the systemic inflammatory response syndrome (SIRS), or were suspected of having/diagnosed with sepsis. Patients were clinically evaluated by a panel of three expert physicians blinded to the SeptiCyte test results. Results were interpreted under either the Sepsis-2 or Sepsis-3 framework. (3) Results: Under the Sepsis-2 framework, SeptiCyte RAPID performance for the combined retrospective and prospective cohorts had Areas Under the ROC Curve (AUCs) ranging from 0.82 to 0.85, a negative predictive value of 0.91 (sensitivity 0.94) for SeptiScore Band 1 (score range 0.1-5.0; lowest risk of sepsis), and a positive predictive value of 0.81 (specificity 0.90) for SeptiScore Band 4 (score range 7.4-15; highest risk of sepsis). Performance estimates for the prospective cohort ranged from AUC 0.86-0.95. For physician-adjudicated sepsis cases that were blood culture (+) or blood, urine culture (+)(+), 43/48 (90%) of SeptiCyte scores fell in Bands 3 or 4. In multivariable analysis with up to 14 additional clinical variables, SeptiScore was the most important variable for sepsis diagnosis. A comparable performance was obtained for the majority of patients reanalyzed under the Sepsis-3 definition, although a subgroup of 16 patients was identified that was called septic under Sepsis-2 but not under Sepsis-3. (4) Conclusions: This study validates SeptiCyte RAPID for estimating sepsis probability, under both the Sepsis-2 and Sepsis-3 frameworks, for hospitalized patients on their first day of ICU admission.

2.
J Vis Exp ; (192)2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36876955

RESUMEN

Acute respiratory distress syndrome (ARDS) causes acute lung injury, characterized by rapid alveolar damage and severe hypoxemia. This, in turn, leads to high morbidity and mortality. Currently, there are no pre-clinical models that recapitulate the complexity of human ARDS. However, infectious models of pneumonia (PNA) can replicate the main pathophysiological features of ARDS. Here, we describe a model of PNA induced by the intratracheal instillation of live Streptococcus pneumoniae and Klebsiella pneumoniae in C57BL6 mice. In order to evaluate and characterize the model, after inducing injury, we carried out serial measurements of body weight and bronchoalveolar lavage (BAL) for measuring markers of lung injury. Additionally, we harvested lungs for cell count and differentials, BAL protein quantification, cytospin, bacterial colony-forming unit counts, and histology. Lastly, high dimensional flow cytometry was performed. We propose this model as a tool to understand the immune landscape during the early and late resolution phases of lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Neumonía , Animales , Ratones , Humanos , Ratones Endogámicos C57BL , Streptococcus pneumoniae , Dimercaprol , Modelos Teóricos
3.
Commun Biol ; 5(1): 242, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304580

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has incited a global health crisis. Currently, there are limited therapeutic options for the prevention and treatment of SARS-CoV-2 infections. We evaluated the antiviral activity of sulforaphane (SFN), the principal biologically active phytochemical derived from glucoraphanin, the naturally occurring precursor present in high concentrations in cruciferous vegetables. SFN inhibited in vitro replication of six strains of SARS-CoV-2, including Delta and Omicron, as well as that of the seasonal coronavirus HCoV-OC43. Further, SFN and remdesivir interacted synergistically to inhibit coronavirus infection in vitro. Prophylactic administration of SFN to K18-hACE2 mice prior to intranasal SARS-CoV-2 infection significantly decreased the viral load in the lungs and upper respiratory tract and reduced lung injury and pulmonary pathology compared to untreated infected mice. SFN treatment diminished immune cell activation in the lungs, including significantly lower recruitment of myeloid cells and a reduction in T cell activation and cytokine production. Our results suggest that SFN should be explored as a potential agent for the prevention or treatment of coronavirus infections.


Asunto(s)
Antivirales/uso terapéutico , Resfriado Común/tratamiento farmacológico , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus Humano OC43 , Isotiocianatos/uso terapéutico , SARS-CoV-2 , Sulfóxidos/uso terapéutico , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/uso terapéutico , Animales , Células CACO-2 , Chlorocebus aethiops , Resfriado Común/virología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Citocinas/inmunología , Sinergismo Farmacológico , Humanos , Pulmón/inmunología , Pulmón/virología , Macrófagos Alveolares/inmunología , Masculino , Ratones Transgénicos , Bazo/inmunología , Linfocitos T/inmunología , Células Vero , Carga Viral , Tratamiento Farmacológico de COVID-19
4.
Front Immunol ; 12: 744782, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721414

RESUMEN

Introduction: There is evidence that obesity, a risk factor for asthma severity and morbidity, has a unique asthma phenotype which is less atopic and less responsive to inhaled corticosteroids (ICS). Peripheral blood mononuclear cells (PBMC) are important to the immunologic pathways of obese asthma and steroid resistance. However, the cellular source associated with steroid resistance has remained elusive. We compared the lymphocyte landscape among obese children with asthma to matched normal weight children with asthma and assessed relationship to asthma control. Methods: High-dimensional flow cytometry of PBMC at baseline and after dexamethasone stimulation was performed to characterize lymphocyte subpopulations, T-lymphocyte polarization, proliferation (Ki-67+), and expression of the steroid-responsive protein FK506-binding protein 51 (FKBP51). T-lymphocyte populations were compared between obese and normal-weight participants, and an unbiased, unsupervised clustering analysis was performed. Differentially expressed clusters were compared with asthma control, adjusted for ICS and exhaled nitric oxide. Results: In the obese population, there was an increased cluster of CD4+ T-lymphocytes expressing Ki-67 and FKBP51 at baseline and CD4+ T-lymphocytes expressing FKBP51 after dexamethasone stimulation. CD4+ Ki-67 and FKBP51 expression at baseline showed no association with asthma control. Dexamethasone-induced CD4+ FKBP51 expression was associated with worse asthma control in obese participants with asthma. FKBP51 expression in CD8+ T cells and CD19+ B cells did not differ among groups, nor did polarization profiles for Th1, Th2, Th9, or Th17 percentage. Discussion: Dexamethasone-induced CD4+ FKBP51 expression is uniquely associated with worse asthma control in obese children with asthma and may underlie the corticosteroid resistance observed in this population.


Asunto(s)
Antiinflamatorios/uso terapéutico , Asma/tratamiento farmacológico , Linfocitos T CD4-Positivos/inmunología , Dexametasona/uso terapéutico , Obesidad Infantil/complicaciones , Proteínas de Unión a Tacrolimus/biosíntesis , Filtros de Aire , Asma/complicaciones , Asma/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Niño , Resistencia a Medicamentos/inmunología , Femenino , Humanos , Masculino , Material Particulado/efectos adversos , Obesidad Infantil/inmunología
5.
mBio ; 12(4): e0097421, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34253053

RESUMEN

In the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males than in females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8 to 10 weeks of age) were inoculated intranasally with 105 50% tissue culture infective dose (TCID50) of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developed more extensive pneumonia as noted on chest computed tomography, and recovered more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including interferon-ß (IFN-ß) and tumor necrosis factor-α (TNF-α), were comparable between the sexes. However, during the recovery phase of infection, females mounted 2-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole-inactivated SARS-CoV-2 and mutant S-RBDs as well as virus-neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2-associated sex differences seen in the human population. IMPORTANCE Men experience more severe outcomes from coronavirus disease 2019 (COVID-19) than women. Golden Syrian hamsters were used to explore sex differences in the pathogenesis of a human isolate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After inoculation, male hamsters experienced greater sickness, developed more severe lung pathology, and recovered more slowly than females. Sex differences in disease could not be reversed by estradiol treatment in males and were not explained by either virus replication kinetics or the concentrations of inflammatory cytokines in the lungs. During the recovery period, antiviral antibody responses in the respiratory tract and plasma, including to newly emerging SARS-CoV-2 variants, were greater in female than in male hamsters. Greater lung pathology during the acute phase combined with lower antiviral antibody responses during the recovery phase of infection in males than in females illustrate the utility of golden Syrian hamsters as a model to explore sex differences in the pathogenesis of SARS-CoV-2 and vaccine-induced immunity and protection.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , Pulmón/patología , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Animales , Formación de Anticuerpos/inmunología , Cricetinae , Modelos Animales de Enfermedad , Estradiol/farmacología , Femenino , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Interferón beta/análisis , Pulmón/diagnóstico por imagen , Pulmón/virología , Masculino , Factores Sexuales , Glicoproteína de la Espiga del Coronavirus/inmunología , Factor de Necrosis Tumoral alfa/análisis , Carga Viral
6.
Chest ; 160(4): 1245-1254, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34029566

RESUMEN

BACKGROUND: Attenuation of transforming growth factor ß by blocking angiotensin II has been shown to reduce emphysema in a murine model. General population studies have demonstrated that the use of angiotensin converting enzyme inhibitors (ACEis) and angiotensin-receptor blockers (ARBs) is associated with reduction of emphysema progression in former smokers and that the use of ACEis is associated with reduction of FEV1 progression in current smokers. RESEARCH QUESTION: Is use of ACEi and ARB associated with less progression of emphysema and FEV1 decline among individuals with COPD or baseline emphysema? METHODS: Former and current smokers from the Genetic Epidemiology of COPD Study who attended baseline and 5-year follow-up visits, did not change smoking status, and underwent chest CT imaging were included. Adjusted linear mixed models were used to evaluate progression of adjusted lung density (ALD), percent emphysema (%total lung volume <-950 Hounsfield units [HU]), 15th percentile of the attenuation histogram (attenuation [in HU] below which 15% of voxels are situated plus 1,000 HU), and lung function decline over 5 years between ACEi and ARB users and nonusers in those with spirometry-confirmed COPD, as well as all participants and those with baseline emphysema. Effect modification by smoking status also was investigated. RESULTS: Over 5 years of follow-up, compared with nonusers, ACEi and ARB users with COPD showed slower ALD progression (adjusted mean difference [aMD], 1.6; 95% CI, 0.34-2.9). Slowed lung function decline was not observed based on phase 1 medication (aMD of FEV1 % predicted, 0.83; 95% CI, -0.62 to 2.3), but was when analysis was limited to consistent ACEi and ARB users (aMD of FEV1 % predicted, 1.9; 95% CI, 0.14-3.6). No effect modification by smoking status was found for radiographic outcomes, and the lung function effect was more pronounced in former smokers. Results were similar among participants with baseline emphysema. INTERPRETATION: Among participants with spirometry-confirmed COPD or baseline emphysema, ACEi and ARB use was associated with slower progression of emphysema and lung function decline. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov.


Asunto(s)
Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Enfisema Pulmonar/diagnóstico por imagen , Anciano , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Volumen Espiratorio Forzado , Humanos , Mediciones del Volumen Pulmonar , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores Protectores , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/fisiopatología , Espirometría , Tomografía Computarizada por Rayos X , Capacidad Vital , Prueba de Paso
7.
bioRxiv ; 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33791708

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has incited a global health crisis. Currently, there are no orally available medications for prophylaxis for those exposed to SARS-CoV-2 and limited therapeutic options for those who develop COVID-19. We evaluated the antiviral activity of sulforaphane (SFN), a naturally occurring, orally available, well-tolerated, nutritional supplement present in high concentrations in cruciferous vegetables with limited side effects. SFN inhibited in vitro replication of four strains of SARS-CoV-2 as well as that of the seasonal coronavirus HCoV-OC43. Further, SFN and remdesivir interacted synergistically to inhibit coronavirus infection in vitro. Prophylactic administration of SFN to K18-hACE2 mice prior to intranasal SARS-CoV-2 infection significantly decreased the viral load in the lungs and upper respiratory tract and reduced lung injury and pulmonary pathology compared to untreated infected mice. SFN treatment diminished immune cell activation in the lungs, including significantly lower recruitment of myeloid cells and a reduction in T cell activation and cytokine production. Our results suggest that SFN is a promising treatment for prevention of coronavirus infection or treatment of early disease.

8.
Sci Transl Med ; 13(589)2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853931

RESUMEN

Enterobacterales represent the largest group of bacterial pathogens in humans and are responsible for severe, deep-seated infections, often resulting in sepsis or death. They are also a prominent cause of multidrug-resistant (MDR) infections, and some species are recognized as biothreat pathogens. Tools for noninvasive, whole-body analysis that can localize a pathogen with specificity are needed, but no such technology currently exists. We previously demonstrated that positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-d-sorbitol (18F-FDS) can selectively detect Enterobacterales infections in murine models. Here, we demonstrate that uptake of 18F-FDS by bacteria occurs via a metabolically conserved sorbitol-specific pathway with rapid in vitro 18F-FDS uptake noted in clinical strains, including MDR isolates. Whole-body 18F-FDS PET/computerized tomography (CT) in 26 prospectively enrolled patients with either microbiologically confirmed Enterobacterales infection or other pathologies demonstrated that 18F-FDS PET/CT was safe, could rapidly detect and localize Enterobacterales infections due to drug-susceptible or MDR strains, and differentiated them from sterile inflammation or cancerous lesions. Repeat imaging in the same patients monitored antibiotic efficacy with decreases in PET signal correlating with clinical improvement. To facilitate the use of 18F-FDS, we developed a self-contained, solid-phase cartridge to rapidly (<10 min) formulate ready-to-use 18F-FDS from commercially available 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) at room temperature. In a hamster model, 18F-FDS PET/CT also differentiated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia from secondary Klebsiella pneumoniae pneumonia-a leading cause of complications in hospitalized patients with COVID-19. These data support 18F-FDS as an innovative and readily available, pathogen-specific PET technology with clinical applications.


Asunto(s)
Infecciones por Enterobacteriaceae/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , COVID-19 , Fluorodesoxiglucosa F18 , Humanos , Tomografía de Emisión de Positrones
9.
J Clin Invest ; 131(10)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33830946

RESUMEN

BACKGROUNDRecent studies have reported T cell immunity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in unexposed donors, possibly due to crossrecognition by T cells specific for common cold coronaviruses (CCCs). True T cell crossreactivity, defined as the recognition by a single TCR of more than one distinct peptide-MHC ligand, has never been shown in the context of SARS-CoV-2.METHODSWe used the viral functional expansion of specific T cells (ViraFEST) platform to identify T cell responses crossreactive for the spike (S) glycoproteins of SARS-CoV-2 and CCCs at the T cell receptor (TCR) clonotype level in convalescent COVID-19 patients (CCPs) and SARS-CoV-2-unexposed donors. Confirmation of SARS-CoV-2/CCC crossreactivity and assessments of functional avidity were performed using a TCR cloning and transfection system.RESULTSMemory CD4+ T cell clonotypes that crossrecognized the S proteins of SARS-CoV-2 and at least one other CCC were detected in 65% of CCPs and unexposed donors. Several of these TCRs were shared among multiple donors. Crossreactive T cells demonstrated significantly impaired SARS-CoV-2-specific proliferation in vitro relative to monospecific CD4+ T cells, which was consistent with lower functional avidity of their TCRs for SARS-CoV-2 relative to CCC.CONCLUSIONSOur data confirm, for what we believe is the first time, the existence of unique memory CD4+ T cell clonotypes crossrecognizing SARS-CoV-2 and CCCs. The lower avidity of crossreactive TCRs for SARS-CoV-2 may be the result of antigenic imprinting, such that preexisting CCC-specific memory T cells have reduced expansive capacity upon SARS-CoV-2 infection. Further studies are needed to determine how these crossreactive T cell responses affect clinical outcomes in COVID-19 patients.FUNDINGNIH funding (U54CA260492, P30CA006973, P41EB028239, R01AI153349, R01AI145435-A1, R21AI149760, and U19A1088791) was provided by the National Institute of Allergy and Infectious Diseases, the National Cancer Institute, and the National Institute of Biomedical Imaging and Bioengineering. The Bloomberg~Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University Provost, and The Bill and Melinda Gates Foundation provided funding for this study.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , COVID-19/inmunología , Epítopos de Linfocito T/inmunología , Memoria Inmunológica , Receptores de Antígenos de Linfocitos T/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Reacciones Cruzadas , Femenino , Humanos , Células Jurkat , Masculino , Persona de Mediana Edad
10.
Cell Rep ; 34(11): 108863, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33691089

RESUMEN

It is unclear why some SARS-CoV-2 patients readily resolve infection while others develop severe disease. By interrogating metabolic programs of immune cells in severe and recovered coronavirus disease 2019 (COVID-19) patients compared with other viral infections, we identify a unique population of T cells. These T cells express increased Voltage-Dependent Anion Channel 1 (VDAC1), accompanied by gene programs and functional characteristics linked to mitochondrial dysfunction and apoptosis. The percentage of these cells increases in elderly patients and correlates with lymphopenia. Importantly, T cell apoptosis is inhibited in vitro by targeting the oligomerization of VDAC1 or blocking caspase activity. We also observe an expansion of myeloid-derived suppressor cells with unique metabolic phenotypes specific to COVID-19, and their presence distinguishes severe from mild disease. Overall, the identification of these metabolic phenotypes provides insight into the dysfunctional immune response in acutely ill COVID-19 patients and provides a means to predict and track disease severity and/or design metabolic therapeutic regimens.


Asunto(s)
COVID-19/inmunología , COVID-19/metabolismo , Inmunidad/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis/inmunología , Caspasas/inmunología , Caspasas/metabolismo , Femenino , Humanos , Linfopenia/inmunología , Linfopenia/metabolismo , Masculino , Persona de Mediana Edad , Mitocondrias/inmunología , Mitocondrias/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Adulto Joven
11.
JCI Insight ; 6(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33290273

RESUMEN

Current treatments for pneumonia (PNA) are focused on the pathogens. Mortality from PNA-induced acute lung injury (PNA-ALI) remains high, underscoring the need for additional therapeutic targets. Clinical and experimental evidence exists for potential sex differences in PNA survival, with males having higher mortality. In a model of severe pneumococcal PNA, when compared with male mice, age-matched female mice exhibited enhanced resolution characterized by decreased alveolar and lung inflammation and increased numbers of Tregs. Recognizing the critical role of Tregs in lung injury resolution, we evaluated whether improved outcomes in female mice were due to estradiol (E2) effects on Treg biology. E2 promoted a Treg-suppressive phenotype in vitro and resolution of PNA in vivo. Systemic rescue administration of E2 promoted resolution of PNA in male mice independent of lung bacterial clearance. E2 augmented Treg expression of Foxp3, CD25, and GATA3, an effect that required ERß, and not ERα, signaling. Importantly, the in vivo therapeutic effects of E2 were lost in Treg-depleted mice (Foxp3DTR mice). Adoptive transfer of ex vivo E2-treated Tregs rescued Streptococcus pneumoniae-induce PNA-ALI, a salutary effect that required Treg ERß expression. E2/ERß was required for Tregs to control macrophage proinflammatory responses. Our findings support the therapeutic role for E2 in promoting resolution of lung inflammation after PNA via ERß Tregs.


Asunto(s)
Estradiol/farmacología , Receptor beta de Estrógeno/metabolismo , Neumonía Neumocócica/tratamiento farmacológico , Linfocitos T Reguladores/efectos de los fármacos , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/metabolismo , Traslado Adoptivo , Animales , Modelos Animales de Enfermedad , Estradiol/metabolismo , Receptor beta de Estrógeno/deficiencia , Receptor beta de Estrógeno/genética , Femenino , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/metabolismo , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/patología , Factores Sexuales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
12.
Chronic Obstr Pulm Dis ; 8(1)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33156984

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by recurrent exacerbations. Macrophages play a critical role in immune response and tissue repair in COPD. Airway macrophages (AM) are exposed to environmental exposures which are retained in the cytoplasmic material. Both biomass and particulate matter have been linked to higher AM black carbon. It is unknown if AM black carbon is associated with COPD morbidity and macrophage phenotype. METHODS: Former smokers with COPD were enrolled and sputum induction was performed to obtain airway macrophages. Macrophages underwent black carbon quantification and flow cytometry phenotyping. Health information was obtained the same day as sputum induction and prospective exacerbations were assessed by monthly telephone calls. RESULTS: We studied 30 former smokers with COPD who had a mean age of 67 years and mean forced expiratory volume in 1 second (FEV1)% predicted of 60.8%. Higher AM black carbon content was associated with increased total exacerbations and severe exacerbations and reduced CD80 expression. CONCLUSION: AM black carbon association with respiratory morbidity is largely unexplored and this is the first study to identify association with prospective exacerbations. Macrophages expressed reduced CD80, a surface marker providing costimulatory signals required for development of antigen-specific immune responses. Our findings suggest that reduced CD80 expression is the pathophysiologic mechanism for the association of AM black carbon content and increased exacerbations. Therefore, beyond solely serving as a marker for increased exposures, AM black carbon content may be a predictor of future exacerbations given a macrophage less equipped to respond to an acute infectious exposure.

13.
J Clin Invest ; 130(12): 6214-6217, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33021506

RESUMEN

COVID-19 spans a wide range of symptoms, sometimes with profound immune system involvement. How immune cell subsets change during the disease course and with disease severity needs further study. While myeloid cells have been shown to initiate and maintain responses to pneumonia and lung inflammation, often playing a role in resolution, their involvement with COVID-19 remains unknown. In this issue of the JCI, Sánchez-Cerrillo and Landete et al. investigated DCs and monocytes from blood and bronchial secretions of patients with varying COVID-19 severity and with healthy controls. The authors conclude that circulating monocytes and DCs migrate from the blood into the inflamed lungs. While sampling differences in sex, collection timing, bacteria/fungal infection, and corticosteroid treatment limit interpretation, we believe that reprogramming monocyte or macrophages by targeting immunometabolism, epigenetics, or the cytokine milieu holds promise in resolving lung inflammation associated with COVID-19.


Asunto(s)
COVID-19 , Humanos , Pulmón , Monocitos , Pandemias , SARS-CoV-2
15.
medRxiv ; 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32935120

RESUMEN

It remains unclear why some patients infected with SARS-CoV-2 readily resolve infection while others develop severe disease. To address this question, we employed a novel assay to interrogate immune-metabolic programs of T cells and myeloid cells in severe and recovered COVID-19 patients. Using this approach, we identified a unique population of T cells expressing high H3K27me3 and the mitochondrial membrane protein voltage-dependent anion channel (VDAC), which were expanded in acutely ill COVID-19 patients and distinct from T cells found in patients infected with hepatitis c or influenza and in recovered COVID-19. Increased VDAC was associated with gene programs linked to mitochondrial dysfunction and apoptosis. High-resolution fluorescence and electron microscopy imaging of the cells revealed dysmorphic mitochondria and release of cytochrome c into the cytoplasm, indicative of apoptosis activation. The percentage of these cells was markedly increased in elderly patients and correlated with lymphopenia. Importantly, T cell apoptosis could be inhibited in vitro by targeting the oligomerization of VDAC or blocking caspase activity. In addition to these T cell findings, we also observed a robust population of Hexokinase II+ polymorphonuclear-myeloid derived suppressor cells (PMN-MDSC), exclusively found in the acutely ill COVID-19 patients and not the other viral diseases. Finally, we revealed a unique population of monocytic MDSC (M-MDSC) expressing high levels of carnitine palmitoyltransferase 1a (CPT1a) and VDAC. The metabolic phenotype of these cells was not only highly specific to COVID-19 patients but the presence of these cells was able to distinguish severe from mild disease. Overall, the identification of these novel metabolic phenotypes not only provides insight into the dysfunctional immune response in acutely ill COVID-19 patients but also provide a means to predict and track disease severity as well as an opportunity to design and evaluate novel metabolic therapeutic regimens.

17.
J Immunother Cancer ; 8(1)2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32554618

RESUMEN

BACKGROUND: Pneumonitis from immune checkpoint inhibitors (ICI) is a potentially fatal immune-related adverse event (irAE) from antiprogrammed death 1/programmed death ligand 1 immunotherapy. Most cases of ICI pneumonitis improve or resolve with 4-6 weeks of corticosteroid therapy. Herein, we report the incidence, clinicopathological features and management of patients with non-small cell lung cancer (NSCLC) and melanoma who developed chronic ICI pneumonitis that warrants ≥12 weeks of immunosuppression. METHODS: Patients with ICI pneumonitis were identified from institutional databases of ICI-treated patients with advanced melanoma and NSCLC between January 2011 and July 2018. ICI pneumonitis was defined as clinical/radiographic evidence of lung inflammation without alternative diagnoses, adjudicated by a multidisciplinary team. Chronic ICI pneumonitis was defined as pneumonitis that persists or worsens with steroid tapering, and necessitates ≥12 weeks of immunosuppression, after ICI discontinuation. Serial chest CT was used to assess radiological features, and tumor response by Response EvaluationCriteria for Solid Tumors V.1.1. Bronchoalveolar lavage fluid (BALF) samples were assessed by cell differential. Lung biopsy samples were evaluated by H&E staining and multiplex immunofluorescence (mIF), where available. RESULTS: Among 299 patients, 44 developed ICI pneumonitis (NSCLC: 5/205; melanoma: 1/94), and of these, 6 experienced chronic ICI pneumonitis. The overall incidence of chronic ICI pneumonitis was thus 2%. Of those who developed chronic ICI pneumonitis: the majority had NSCLC (5/6), all sustained disease control from ICIs, and none had other concurrent irAEs. Timing of chronic ICI pneumonitis development was variable (range: 0-50 months), and occurred at a median of 12 months post ICI start. Recrudescence of ICI pneumonitis occurred at a median of 6 weeks after initial steroid start (range: 3-12 weeks), with all patients requiring steroid reintroduction when tapered to ≤10 mg prednisone/equivalent. The median total duration of steroids was 37 weeks (range: 16-43+weeks). Re-emergence of radiographic ICI pneumonitis occurred in the same locations on chest CT, in most cases (5/6). All patients who developed chronic ICI pneumonitis had BALF lymphocytosis on cell differential and organising pneumonia on lung biopsy at initial ICI pneumonitis presentation, with persistent BALF lymphocytosis and brisk CD8+ infiltration on mIF at pneumonitis re-emergence during steroid taper. CONCLUSIONS: A subset of patients who develop pneumonitis from ICIs will develop chronic ICI pneumonitis, that warrants long-term immunosuppression of ≥12 weeks, and has distinct clinicopathological features.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neumonía/tratamiento farmacológico , Anciano , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Masculino , Persona de Mediana Edad , Neumonía/patología , Estudios Retrospectivos
18.
J Clin Invest ; 129(7): 2608-2618, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31259743

RESUMEN

Acute organ injuries such as acute cerebrovascular accidents, myocardial infarction, acute kidney injury, acute lung injury, and others are among the leading causes of death worldwide. Dysregulated or insufficient organ repair mechanisms limit restoration of homeostasis and contribute to chronic organ failure. Studies reveal that both humans and mice harness potent non-stem cells that are capable of directly or indirectly promoting tissue repair. Specific populations of T lymphocytes have emerged as important reparative cells with context-specific actions. These T cells can resolve inflammation and secrete reparative cytokines and growth factors as well as interact with other immune and stromal cells to promote the complex and active process of tissue repair. This Review focuses on the major populations of T lymphocytes known to mediate tissue repair, their reparative mechanisms, and the diseases in which they have been implicated. Elucidating and harnessing the mechanisms that promote the reparative functions of these T cells could greatly improve organ dysfunction after acute injury.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Infarto del Miocardio/inmunología , Regeneración/inmunología , Accidente Cerebrovascular/inmunología , Linfocitos T/inmunología , Lesión Pulmonar Aguda/patología , Animales , Citocinas/inmunología , Humanos , Inflamación/inmunología , Inflamación/patología , Ratones , Infarto del Miocardio/patología , Accidente Cerebrovascular/patología , Linfocitos T/patología
20.
J Intensive Care ; 7: 13, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30828456

RESUMEN

BACKGROUND: Differentiating sepsis from the systemic inflammatory response syndrome (SIRS) in critical care patients is challenging, especially before serious organ damage is evident, and with variable clinical presentations of patients and variable training and experience of attending physicians. Our objective was to describe and quantify physician agreement in diagnosing SIRS or sepsis in critical care patients as a function of available clinical information, infection site, and hospital setting. METHODS: We conducted a post hoc analysis of previously collected data from a prospective, observational trial (N = 249 subjects) in intensive care units at seven US hospitals, in which physicians at different stages of patient care were asked to make diagnostic calls of either SIRS, sepsis, or indeterminate, based on varying amounts of available clinical information (clinicaltrials.gov identifier: NCT02127502). The overall percent agreement and the free-marginal, inter-observer agreement statistic kappa (κ free) were used to quantify agreement between evaluators (attending physicians, site investigators, external expert panelists). Logistic regression and machine learning techniques were used to search for significant variables that could explain heterogeneity within the indeterminate and SIRS patient subgroups. RESULTS: Free-marginal kappa decreased between the initial impression of the attending physician and (1) the initial impression of the site investigator (κ free 0.68), (2) the consensus discharge diagnosis of the site investigators (κ free 0.62), and (3) the consensus diagnosis of the external expert panel (κ free 0.58). In contrast, agreement was greatest between the consensus discharge impression of site investigators and the consensus diagnosis of the external expert panel (κ free 0.79). When stratified by infection site, κ free for agreement between initial and later diagnoses had a mean value + 0.24 (range - 0.29 to + 0.39) for respiratory infections, compared to + 0.70 (range + 0.42 to + 0.88) for abdominal + urinary + other infections. Bioinformatics analysis failed to clearly resolve the indeterminate diagnoses and also failed to explain why 60% of SIRS patients were treated with antibiotics. CONCLUSIONS: Considerable uncertainty surrounds the differential clinical diagnosis of sepsis vs. SIRS, especially before organ damage has become highly evident, and for patients presenting with respiratory clinical signs. Our findings underscore the need to provide physicians with accurate, timely diagnostic information in evaluating possible sepsis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...