Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cells Dev ; 26(11): 843-855, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28287912

RESUMEN

White adipose tissue is a source of mesenchymal stromal/stem cells (MSCs) that are actively studied for their possible therapeutic use in bone tissue repair/remodeling. To better appreciate the osteogenic potential of these cells, we compared some properties of MSCs from human subcutaneous adipose tissue [subcutaneous-adipose stromal cells (S-ASCs)] and dental pulp stem cell (DPSCs) of third-impacted molars, the latter representing a well-established MSC source. Both undifferentiated cell types showed similar fibroblast-like morphology and mesenchymal marker expression. However, undifferentiated S-ASCs displayed a faster doubling time coupled to greater proliferation and colony-forming ability than DPSCs. Also, the osteogenic differentiation of S-ASCs was greater than that of DPSCs, as evaluated by the higher levels of expression of early osteogenic markers Runt-related transcription factor-2 (RUNX2) and alkaline phosphatase at days 3-14 and of extracellular matrix mineralization at days 14-21. Moreover, S-ASCs showed a better colonization of the titanium scaffold. In addition, we investigated whether S-ASC osteogenic commitment was enhanced by adenosine A1 receptor (A1R) stimulation, as previously shown for DPSCs. Although A1R expression was constant during DPSC differentiation, it increased in S-ASC at day 21 from osteogenesis induction. Accordingly, A1R stimulation by the agonist 2-chloro-N6-cyclopentyl-adenosine, added to the cultures at each medium change, stimulated proliferation only in differentiating DPSC and enhanced the osteogenic differentiation earlier in DPSCs than in S-ASCs. These effects were counteracted by cell pretreatment with a selective A1R antagonist. Thus, our findings suggest that S-ASCs could be advantageously used in regenerative orthopedics/dentistry, and locally released or exogenously added purines may play a role in bone repair/remodeling, even though this aspect should be more thoroughly evaluated.


Asunto(s)
Diferenciación Celular , Pulpa Dental/citología , Células Madre Mesenquimatosas/citología , Osteogénesis , Grasa Subcutánea/citología , Adenosina/análogos & derivados , Adenosina/farmacología , Adolescente , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/ultraestructura , Osteogénesis/efectos de los fármacos , Fenotipo , Receptor de Adenosina A1/metabolismo , Espectrometría por Rayos X
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1009-1010: 114-21, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26720700

RESUMEN

Purine nucleoside phosphorylase (PNP) activity is involved in cell survival and function, since PNP is a key enzyme in the purine metabolic pathway where it catalyzes the phosphorolysis of the nucleosides to the corresponding nucleobases. Its dysfunction has been found in relevant pathological conditions (such as inflammation and cancer), so the detection of PNP activity in plasma could represent an attractive marker for early diagnosis or assessment of disease progression. Thus the aim of this study was to develop a simple, fast and sensitive HPLC method for the determination of PNP activity in plasma. The separation was achieved on a Phenomenex Kinetex PFP column using 0.1% formic acid in water and methanol as mobile phases in gradient elution mode at a flow rate of 1ml/min and purine compounds were detected using UV absorption and fluorescence. The analysis was fast since the run was achieved within 13min. This method improved the separation of the different purines, allowing the UV-based quantification of the natural PNP substrates (inosine and guanosine) or products (hypoxanthine and guanine) and its subsequent metabolic products (xanthine and uric acid) with a good precision and accuracy. The most interesting innovation is the simultaneous use of a fluorescence detector (excitation/emission wavelength of 260/375nm) that allowed the quantification of guanosine and guanine without derivatization. Compared with UV, the fluorescence detection improved the sensitivity for guanine detection by about 10-fold and abolished almost completely the baseline noise due to the presence of plasma in the enzymatic reaction mixture. Thus, the validated method allowed an excellent evaluation of PNP activity in plasma which could be useful as an indicator of several pathological conditions.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Purina-Nucleósido Fosforilasa/sangre , Cromatografía Líquida de Alta Presión/economía , Pruebas de Enzimas/economía , Pruebas de Enzimas/métodos , Fluorescencia , Guanina/sangre , Guanina/metabolismo , Guanosina/sangre , Guanosina/metabolismo , Humanos , Límite de Detección , Purina-Nucleósido Fosforilasa/metabolismo
3.
Cell Physiol Biochem ; 36(1): 259-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25967965

RESUMEN

BACKGROUND/AIMS: Mesenchymal stem cells from human amniotic fluid (huAFMSCs) can differentiate into multiple lineages and are not tumorigenic after transplantation, making them good candidates for therapeutic purposes. The aim was to determine the effects of calcitonin on these huAFMSCs during osteogenic differentiation, in terms of the physiological role of calcitonin in bone homeostasis. METHODS: For huAFMSCs cultured under different conditions, we assayed: expression of the calcitonin receptor, using immunolabelling techniques; proliferation and osteogenesis, using colorimetric and enzymatic assays; intracellular Ca(2+) and cAMP levels, using videomicroscopy and spectrophotometry. RESULTS: The calcitonin receptor was expressed in proliferating and osteo-differentiated huAFMSCs. Calcitonin triggered intracellular Ca(2+) increases and cAMP production. Its presence in cell medium also induced dose-dependent inhibitory effects on proliferation and increased osteogenic differentiation of huAFMSCs, as also indicated by enhancement of specific markers and alkaline phosphatase activity. CONCLUSIONS: These data show that huAFMSCs represent a potential osteogenic model to study in-vitro cell responses to calcitonin (and other members of the calcitonin family). This leads the way to the opening of new lines of research that will add new insight both in cell therapies and in the pharmacological use of these molecules.


Asunto(s)
Líquido Amniótico/citología , Calcitonina/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Líquido Amniótico/efectos de los fármacos , Líquido Amniótico/metabolismo , Biomarcadores/metabolismo , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Femenino , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Embarazo , Receptores de Calcitonina/metabolismo
4.
Purinergic Signal ; 11(3): 331-46, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25976165

RESUMEN

Glioblastoma multiforme (GBM), the most common and aggressive brain tumor in humans, comprises a population of stem-like cells (GSCs) that are currently investigated as potential target for GBM therapy. Here, we used GSCs isolated from three different GBM surgical specimens to examine the antitumor activity of purines. Cultured GSCs expressed either metabotropic adenosine P1 and ATP P2Y receptors or ionotropic P2X7 receptors. GSC exposure for 48 h to 10-150 µM ATP, P2R ligand, or to ADPßS or MRS2365, P2Y1R agonists, enhanced cell expansion. This effect was counteracted by the PY1R antagonist MRS2500. In contrast, 48-h treatment with higher doses of ATP or UTP, which binds to P2Y2/4R, or 2'(3')-O-(4-benzoylbenzoyl)-ATP (Bz-ATP), P2X7R agonist, decreased GSC proliferation. Such a reduction was due to apoptotic or necrotic cell death but mostly to growth arrest. Accordingly, cell regrowth and secondary neurosphere formation were observed 2 weeks after the end of treatment. Suramin, nonselective P2R antagonist, MRS1220 or AZ11645373, selective A3R or P2X7R antagonists, respectively, counteracted ATP antiproliferative effects. AZ11645373 also abolished the inhibitory effect of Bz-ATP low doses on GSC growth. These findings provide important clues on the anticancer potential of ligands for A3R, P2Y1R, and P2X7R, which are involved in the GSC growth control. Interestingly, ATP and BzATP potentiated the cytotoxicity of temozolomide (TMZ), currently used for GBM therapy, enabling it to cause a greater and long-lasting inhibitory effect on GSC duplication when readded to cells previously treated with purine nucleotides plus TMZ. These are the first findings identifying purine nucleotides as able to enhance TMZ antitumor efficacy and might have an immediate translational impact.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Dacarbazina/análogos & derivados , Glioblastoma/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Receptores Purinérgicos/efectos de los fármacos , Antagonistas del Receptor de Adenosina A3/farmacología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/patología , Inhibidores de Caspasas/farmacología , Proliferación Celular , Dacarbazina/farmacología , Sinergismo Farmacológico , Glioblastoma/patología , Humanos , Ligandos , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P1/efectos de los fármacos , Receptores Purinérgicos P2X7/efectos de los fármacos , Temozolomida
6.
Stem Cells Dev ; 24(12): 1415-28, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25608581

RESUMEN

Mesenchymal Stem Cells derived from Amniotic Fluid (AFMSCs) are multipotent cells of great interest for regenerative medicine. Two predominant cell types, that is, Epithelial-like (E-like) and Fibroblast-like (F-like), have been previously detected in the amniotic fluid (AF). In this study, we examined the AF from 12 donors and observed the prevalence of the E-like phenotype in 5, whereas the F-like morphology was predominant in 7 samples. These phenotypes showed slight differences in membrane markers, with higher CD90 and lower Sox2 and SSEA-4 expression in F-like than in E-like cells; whereas CD326 was expressed only in the E-like phenotype. They did not show any significant differences in osteogenic, adipogenic or chondrogenic differentiation. Proteomic analysis revealed that samples with a predominant E-like phenotype (HC1) showed a different profile than those with a predominant F-like phenotype (HC2). Twenty-five and eighteen protein spots were differentially expressed in HC1 and HC2 classes, respectively. Of these, 17 from HC1 and 4 from HC2 were identified by mass spectrometry. Protein-interaction networks for both phenotypes showed strong interactions between specific AFMSC proteins and molecular chaperones, such as preproteasomes and mature proteasomes, both of which are important for cell cycle regulation and apoptosis. Collectively, our results provide evidence that, regardless of differences in protein profiling, the prevalence of E-like or F-like cells in AF does not affect the differentiation capacity of AFMSC preparations. This may be valuable information with a view to the therapeutic use of AFMSCs.


Asunto(s)
Líquido Amniótico/citología , Diferenciación Celular/genética , Células Epiteliales/citología , Fibroblastos/citología , Células Madre Mesenquimatosas/citología , Amniocentesis , Líquido Amniótico/metabolismo , Linaje de la Célula , Células Epiteliales/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Embarazo , Biosíntesis de Proteínas/genética , Mapas de Interacción de Proteínas/genética , Proteómica , Medicina Regenerativa
7.
Adv Exp Med Biol ; 837: 23-33, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25310956

RESUMEN

Increasing body of evidence indicates that neuron-neuroglia interaction may play a key role in determining the progression of neurodegenerative diseases including Parkinson's disease (PD), a chronic pathological condition characterized by selective loss of dopaminergic (DA) neurons in the substantia nigra. We have previously reported that guanosine (GUO) antagonizes MPP(+)-induced cytotoxicity in neuroblastoma cells and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA) and beta-amyloid-induced apoptosis of SH-SY5Y cells. In the present study we demonstrate that GUO protected C6 glioma cells, taken as a model system for astrocytes, from 6-OHDA-induced neurotoxicity. We show that GUO, either alone or in combination with 6-OHDA activated the cell survival pathways ERK and PI3K/Akt. The involvement of these signaling systems in the mechanism of the nucleoside action was strengthened by a reduction of the protective effect when glial cells were pretreated with U0126 or LY294002, the specific inhibitors of MEK1/2 and PI3K, respectively. Since the protective effect on glial cell death of GUO was not affected by pretreatment with a cocktail of nucleoside transporter blockers, GUO transport and its intracellular accumulation were not at play in our in vitro model of PD. This fits well with our data which pointed to the presence of specific binding sites for GUO on rat brain membranes. On the whole, the results described in the present study, along with our recent evidence showing that GUO when administered to rats via intraperitoneal injection is able to reach the brain and with previous data indicating that it stimulates the release of neurotrophic factors, suggest that GUO, a natural compound, by acting at the glial level could be a promising agent to be tested against neurodegeneration.


Asunto(s)
Astrocitos/efectos de los fármacos , Guanosina/farmacología , Fármacos Neuroprotectores/farmacología , Neurotoxinas/antagonistas & inhibidores , Oxidopamina/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Butadienos/farmacología , Línea Celular Tumoral , Cromonas/farmacología , Fragmentación del ADN/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Glioma/patología , Técnicas In Vitro , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Morfolinas/farmacología , Neurotoxinas/toxicidad , Nitrilos/farmacología , Proteínas de Transporte de Nucleósidos/antagonistas & inhibidores , Oxidopamina/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
8.
Stem Cell Res ; 11(1): 611-24, 2013 07.
Artículo en Inglés | MEDLINE | ID: mdl-23651584

RESUMEN

In this study, mesenchymal stem cells deriving from dental pulp (DPSCs) of normal human impacted third molars, previously characterized for their ability to differentiate into osteoblasts, were used. We observed that: i) DPSCs, undifferentiated or submitted to osteogenic differentiation, express all four subtypes of adenosine receptors (AR) and CD73, corresponding to 5'-ecto-nucleotidase; and ii) AR stimulation with selective agonists elicited a greater osteogenic cell differentiation consequent to A1 receptor (A1R) activation. Therefore, we focused on the activity of this AR. The addition of 15-60nM 2-chloro-N(6)-cyclopentyl-adenosine (CCPA), A1R agonist, to DPSCs at each change of the culture medium significantly increased the proliferation of cells grown in osteogenic medium after 8days in vitro (DIV) without modifying that of undifferentiated DPSCs. Better characterizing the effect of A1R stimulation on the osteogenic differentiation capability of these cells, we found that CCPA increased the: i) expression of two well known and early osteogenic markers, RUNX-2 and alkaline phosphatase (ALP), after 3 and 7DIV; ii) ALP enzyme activity at 7DIV and iii) mineralization of extracellular matrix after 21DIV. These effects, abolished by cell pre-treatment with the A1R antagonist 8-cyclopentyl-1,3-dipropyl-xanthine (DPCPX), involved the activation of the canonical Wnt signaling as, in differentiating DPSCs, CCPA significantly increased dishevelled protein and inhibited glycogen synthase kinase-3ß, both molecules being downstream of Wnt receptor signal pathway. Either siRNA of dishevelled or cell pre-treatment with Dickkopf-1, known inhibitor of Wnt signaling substantially reduced either DPSC osteogenic differentiation or its enhancement promoted by CCPA. Summarizing, our findings indicate that the stimulation of A1R may stimulate DPSC duplication enhancing their osteogenic differentiation efficiency. These effects may have clinical implications possibly facilitating bone tissue repair and remodeling.


Asunto(s)
Pulpa Dental/citología , Células Madre Mesenquimatosas/citología , Receptor de Adenosina A1/metabolismo , Vía de Señalización Wnt/fisiología , 5'-Nucleotidasa/biosíntesis , Adolescente , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Pulpa Dental/metabolismo , Femenino , Proteínas Ligadas a GPI/biosíntesis , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Receptor de Adenosina A1/biosíntesis , Receptor de Adenosina A1/genética , Transfección
9.
Stem Cell Rev Rep ; 9(5): 642-54, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23605563

RESUMEN

Human amniotic fluid mesenchymal stem cells (huAFMSCs) are emerging as a promising therapeutic option in regenerative medicine. Here, we characterized huAFMSC phenotype and multipotentiality. When cultured in osteogenic medium, huAFMSC displayed a significant increase in: Alkaline Phosphatase (ALP) activity and mRNA expression, Alizarin Red S staining and Runx2 mRNA expression; whereas maintaining these cells in an adipogenic culture medium gave a time-dependent increase in PPARγ and FABP4 mRNA expression, glycerol-3-phosphate dehydrogenase (GPDH) activity and positivity to Oil Red Oil staining. These results confirm that huAFMSCs can differentiate toward osteogenic and adipogenic phenotypes. The canonical Wnt/ßcatenin signaling pathway appears to trigger huAFMSC osteoblastogenesis, since during early phases of osteogenic differentiation, the expression of Dishevelled-2 (Dvl-2), of the non-phosphorylated form of ß-catenin, and the phosphorylation of glycogen synthase kinase-3ß (GSK3ß) at serine 9 were upregulated. On the contrary, during adipogenic differentiation Dvl-2 expression decreased, whereas that of ß-catenin remained unchanged. This was associated with a late increase in GSK3ß phosphorylation. Consistent with this scenario, huAFMSCs exposure to Dickkopf-1, a selective inhibitor of the Wnt signaling, abolished Runx2 and ALP mRNA upregulation during huAFMSC osteogenic differentiation, whereas it enhanced FABP4 expression in adipocyte-differentiating cells. Taken together, these results unravel novel molecular determinants of huAFMSC commitment towards osteoblastogenesis, which may represent potential targets for directing the differentiation of these cells and improving their use in regenerative medicine.


Asunto(s)
Adipogénesis/fisiología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/fisiología , Vía de Señalización Wnt/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adipogénesis/genética , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Líquido Amniótico/citología , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Proteínas Dishevelled , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular/farmacología , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis/genética , PPAR gamma/genética , PPAR gamma/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
10.
Eur J Neurosci ; 30(6): 1023-35, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19723291

RESUMEN

The involvement of excitatory adenosine A(2A) receptors (A(2A)Rs), which probably contribute to the pathophysiology of convulsive seizures, has never been investigated in absence epilepsy. Here, we examined the distribution and function of A(2A)Rs in the brain of Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats, a model of human absence epilepsy in which disease onset occurs 2-3 months after birth. In the cerebral areas that are mostly involved in the generation of absence seizures (somatosensory cortex, reticular and ventrobasal thalamic nuclei), A(2A)R density was lower in presymptomatic WAG/Rij rats than in control rats, as evaluated by immunohistochemistry and western blotting. Accordingly, in cortical/thalamic slices prepared from the brain of these rats, A(2A)R stimulation with the agonist 2-[4-(-2-carboxyethyl)-phenylamino]-5'-N-ethylcarboxamido-adenosine failed to modulate either cAMP formation, mitogen-activated protein kinase system, or K(+)-evoked glutamate release. In contrast, A(2A)R expression, signalling and function were significantly enhanced in brain slices from epileptic WAG/Rij rats as compared with matched control animals. Additionally, the in vivo injection of the A(2A)R agonist CGS21680, or the antagonist 5-amino-7-(2-phenylethyl)-2-(2-fuyl)-pyrazolo-(4,3-c)1,2,4-triazolo(1,5-c)-pyrimidine, in the examined brain areas of epileptic rats, increased and decreased, respectively, the number/duration of recorded spontaneous spike-wave discharges in a dose-dependent manner during a 1-5 h post-treatment period. Our results support the hypothesis that alteration of excitatory A(2A)R is involved in the pathogenesis of absence seizures and might represent a new interesting target for the therapeutic management of this disease.


Asunto(s)
Epilepsia Tipo Ausencia/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Receptor de Adenosina A2A/metabolismo , Corteza Somatosensorial/metabolismo , Tálamo/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Factores de Edad , Análisis de Varianza , Animales , Western Blotting , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Electroencefalografía , Epilepsia Tipo Ausencia/genética , Ácido Glutámico/metabolismo , Inmunohistoquímica , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Microinyecciones , Fenetilaminas/farmacología , Pirimidinas/farmacología , Ratas , Corteza Somatosensorial/efectos de los fármacos , Tálamo/efectos de los fármacos , Triazoles/farmacología
11.
J Neurosci Res ; 87(3): 617-25, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18816792

RESUMEN

Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) caused by an abnormal rate of apoptosis. Endogenous stem cells in the adult mammalian brain indicate an innate potential for regeneration and possible resource for neuroregeneration in PD. We previously showed that guanosine prevents apoptosis even when administered 48 hr after the toxin 1-methyl-4-phenylpyridinium (MPP(+)). Here, we induced parkinsonism in rats with a proteasome inhibitor. Guanosine treatment reduced apoptosis, increased tyrosine hydroxylase-positive dopaminergic neurons and expression of tyrosine hydroxylase in the SNc, increased cellular proliferation in the SNc and subventricular zone, and ameliorated symptoms. Proliferating cells in the subventricular zone were nestin-positive adult neural progenitor/stem cells. Fibroblast growth factor-2-expressing cells were also increased by guanosine. Thus, guanosine protected cells from apoptosis and stimulated "intrinsic" adult progenitor/stem cells to become dopaminergic neurons in rats with proteasome inhibitor-induced PD. The cellular/molecular mechanisms underlying these effects may open new avenues for development of novel therapeutics for PD.


Asunto(s)
Apoptosis/efectos de los fármacos , Guanosina/uso terapéutico , Actividad Motora/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Trastornos Parkinsonianos/tratamiento farmacológico , Animales , Bromodesoxiuridina , Dopamina/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/fisiopatología , Ratas , Ratas Sprague-Dawley , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
12.
Neurosci Lett ; 418(1): 66-71, 2007 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-17400382

RESUMEN

Astrocyte apoptosis occurs in acute and chronic pathological processes at the central nervous system and the prevention of astrocyte death may represent an efficacious intervention in protecting neurons against degeneration. Our research shows that rat astrocyte exposure to 100 nM staurosporine for 3h caused apoptotic death accompanied by caspase-3, p38 mitogen-ed protein kinase (MAPK) and glycogen synthase kinase-3beta (GSK3beta) activation. N(6)-chlorocyclopentyladenosine (CCPA, 2.5-75 nM), a selective agonist of A(1) adenosine receptors, added to the cultures 1h prior to staurosporine, induced a dose-dependent anti-apoptotic effect, which was inhibited by the A(1) receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine. CCPA also caused a dose- and time-dependent phosphorylation/activation of Akt, a downstream effector of cell survival promoting phosphatidylinositol 3-kinase (PI3K) pathway, which in turn led to inhibition of staurosporine-induced GSK3beta and p38 MAPK activity. Accordingly, the anti-apoptotic effect of CCPA was abolished by culture pre-treatment with LY294002, a selective PI3K inhibitor, pointing out the prevailing role played by PI3K pathway in the protective effect exerted by A(1) receptor activation. Since an abnormal p38 and GSK3beta activity is implicated in acute (stroke) and chronic (Alzheimer's disease) neurodegenerative diseases, the results of the present study provide a hint to better understand adenosine relevance in these disorders.


Asunto(s)
Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Receptor de Adenosina A1/efectos de los fármacos , Estaurosporina/farmacología , Adenosina/análogos & derivados , Adenosina/farmacología , Animales , Apoptosis/fisiología , Astrocitos/metabolismo , Western Blotting , Células Cultivadas , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Receptor de Adenosina A1/metabolismo
13.
Mol Pharmacol ; 71(5): 1369-80, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17293559

RESUMEN

Astrocyte death may occur in neurodegenerative disorders and complicates the outcome of brain ischemia, a condition associated with high extracellular levels of adenosine and glutamate. We show that pharmacological activation of A(1) adenosine and mGlu3 metabotropic glutamate receptors with N(6)-chlorocyclopentyladenosine (CCPA) and (-)2-oxa-4-aminocyclo-[3.1.0]hexane-4,6-dicarboxylic acid (LY379268), respectively, protects cultured astrocytes against apoptosis induced by a 3-h exposure to oxygen/glucose deprivation (OGD). Protection by CCPA and LY379268 was less than additive and was abrogated by receptor blockade with selective competitive antagonists or pertussis toxin. Both in control astrocytes and in astrocytes exposed to OGD, CCPA and LY379268 induced a rapid activation of the phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases 1 and 2 (ERK1/2)/mitogen-activated protein kinase (MAPK) pathways, which are known to support cell survival. In cultures exposed to OGD, CCPA and LY379268 reduced the activation of c-Jun N-terminal kinase and p38/MAPK, reduced the levels of the proapoptotic protein Bad, increased the levels of the antiapoptotic protein Bcl-X(L), and were highly protective against apoptotic death, as shown by nuclear 4'-6-diamidino-2-phenylindole staining and measurements of caspase-3 activity. All of these effects were attenuated by treatment with 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) and 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), which inhibit the MAPK and the PI3K pathways, respectively. These data suggest that pharmacological activation of A(1) and mGlu3 receptors protects astrocytes against hypoxic/ischemic damage by stimulating the PI3K and ERK1/2 MAPK pathways.


Asunto(s)
Apoptosis , Astrocitos/metabolismo , Glucosa/deficiencia , Oxígeno/metabolismo , Receptor de Adenosina A1/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal , Aminoácidos/farmacología , Animales , Apoptosis/efectos de los fármacos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Hipoxia de la Célula/efectos de los fármacos , Células Cultivadas , Activación Enzimática/efectos de los fármacos , MAP Quinasa Quinasa Quinasa 5/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Ratas , Transducción de Señal/efectos de los fármacos , Proteína Letal Asociada a bcl/metabolismo , Proteína bcl-X/metabolismo
14.
J Immunol ; 178(2): 720-31, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17202332

RESUMEN

Growing evidence implicates CD40, a member of the TNFR superfamily, as contributing to the pathogenesis of many neurodegenerative diseases. Thus, strategies to suppress its expression may be of benefit in those disorders. To this aim, we investigated the effect of guanosine, a purine nucleoside that exerts neurotrophic and neuroprotective effects. CD40 expression and function are increased by exposure of mouse microglia cultures or the N9 microglia cell line to IFN-gamma (10 ng/ml) plus TNF-alpha (50 ng/ml) or beta amyloid (Abeta) peptide (Abeta(1-42); 500 nM). Culture pretreatment with guanosine (10-300 microM), starting 1 h before cytokine or Abeta addition, dose-dependently inhibited the CD40-induced expression as well as functional CD40 signaling by suppressing IL-6 production promoted by IFN-gamma/TNF-alpha challenge in the presence of CD40 cross-linking. Moreover, guanosine abrogated IFN-gamma-induced phosphorylation on Ser(727) and translocation of STAT-1alpha to the nucleus as well as TNF-alpha-/Abeta-induced IkappaBalpha and NF-kappaB p65/RelA subunit phosphorylation, thus inhibiting NF-kappaB-induced nuclear translocation. Guanosine effects were mediated by an increased phosphorylation of Akt, a PI3K downstream effector, as well as of ERK1/2 and p38 in the MAPK system, because culture pretreatment with selective ERK1/2, p38 MAPK, and PI3K antagonists (U0126, SB203580, or LY294002, respectively) counteracted guanosine inhibition on IFN-gamma/TNF-alpha-induced CD40 expression and function as well as on STAT-1alpha or NF-kappaB nuclear translocation. These findings suggest a role for guanosine as a potential drug in the experimental therapy of neuroinflammatory/neurodegenerative diseases, particularly Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Antígenos CD40/metabolismo , Guanosina/farmacología , Interferón gamma/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Fragmentos de Péptidos/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Antígenos CD40/genética , Células Cultivadas , Regulación de la Expresión Génica , Quinasa I-kappa B/metabolismo , Factor 3 de Genes Estimulados por el Interferón/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Toxina del Pertussis/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoserina/metabolismo , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Antagonistas de Receptores Purinérgicos P1 , Antagonistas del Receptor Purinérgico P2 , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Transducción de Señal , Transcripción Genética/genética
15.
Purinergic Signal ; 3(4): 399-409, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18404453

RESUMEN

Guanosine exerts neuroprotective effects in the central nervous system. Apoptosis, a morphological form of programmed cell death, is implicated in the pathophysiology of Parkinson's disease (PD). MPP(+), a dopaminergic neurotoxin, produces in vivo and in vitro cellular changes characteristic of PD, such as cytotoxicity, resulting in apoptosis. Undifferentiated human SH-SY5Y neuroblastoma cells had been used as an in vitro model of Parkinson's disease. We investigated if extracellular guanosine affected MPP(+)-induced cytotoxicity and examined the molecular mechanisms mediating its effects. Exposure of neuroblastoma cells to MPP(+) (10 muM-5 mM for 24-72 h) induced DNA fragmentation in a time-dependent manner (p < 0.05). Administration of guanosine (100 muM) before, concomitantly with or, importantly, after the addition of MPP(+) abolished MPP(+)-induced DNA fragmentation. Addition of MPP(+) (500 muM) to cells increased caspase-3 activity over 72 h (p < 0.05), and this was abolished by pre- or co-treatment with guanosine. Exposure of cells to pertussis toxin prior to MPP(+) eliminated the anti-apoptotic effect of guanosine, indicating that this effect is dependent on a Gi protein-coupled receptor, most likely the putative guanosine receptor. The protection by guanosine was also abolished by the selective inhibitor of the enzyme PI-3-K/Akt/PKB (LY294002), confirming that this pathway plays a decisive role in this effect of guanosine. Neither MPP(+) nor guanosine had any significant effect on alpha-synuclein expression. Thus, guanosine antagonizes and reverses MPP(+)-induced cytotoxicity of neuroblastoma cells via activation of the cell survival pathway, PI-3-K/Akt/PKB. Our results suggest that guanosine may be an effective pharmacological intervention in PD.

16.
Purinergic Signal ; 3(4): 411-21, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18404454

RESUMEN

Spinal cord injury results in progressive waves of secondary injuries, cascades of noxious pathological mechanisms that substantially exacerbate the primary injury and the resultant permanent functional deficits. Secondary injuries are associated with inflammation, excessive cytokine release, and cell apoptosis. The purine nucleoside guanosine has significant trophic effects and is neuroprotective, antiapoptotic in vitro, and stimulates nerve regeneration. Therefore, we determined whether systemic administration of guanosine could protect rats from some of the secondary effects of spinal cord injury, thereby reducing neurological deficits. Systemic administration of guanosine (8 mg/kg per day, i.p.) for 14 consecutive days, starting 4 h after moderate spinal cord injury in rats, significantly improved not only motor and sensory functions, but also recovery of bladder function. These improvements were associated with reduction in the inflammatory response to injury, reduction of apoptotic cell death, increased sparing of axons, and preservation of myelin. Our data indicate that the therapeutic action of guanosine probably results from reducing inflammation resulting in the protection of axons, oligodendrocytes, and neurons and from inhibiting apoptotic cell death. These data raise the intriguing possibility that guanosine may also be able to reduce secondary pathological events and thus improve functional outcome after traumatic spinal cord injury in humans.

17.
Purinergic Signal ; 2(4): 637-49, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18404467

RESUMEN

The main source of cholesterol in the central nervous system (CNS) is represented by glial cells, mainly astrocytes, which also synthesise and secrete apolipoproteins, in particular apolipoprotein E (ApoE), the major apolipoprotein in the brain, thus generating cholesterol-rich high density lipoproteins (HDLs). This cholesterol trafficking, even though still poorly known, is considered to play a key role in different aspects of neuronal plasticity and in the stabilisation of synaptic transmission. Moreover, cell cholesterol depletion has recently been linked to a reduction in amyloid beta formation. Here we demonstrate that guanosine, which we previously reported to exert several neuroprotective effects, was able to increase cholesterol efflux from astrocytes and C6 rat glioma cells in the absence of exogenously added acceptors. In this effect the phosphoinositide 3 kinase/extracellular signal-regulated kinase 1/2 (PI3K/ERK1/2) pathway seems to play a pivotal role. Guanosine was also able to increase the expression of ApoE in astrocytes, whereas it did not modify the levels of ATP-binding cassette protein A1 (ABCA1), considered the main cholesterol transporter in the CNS. Given the emerging role of cholesterol balance in neuronal repair, these effects provide evidence for a role of guanosine as a potential pharmacological tool in the modulation of cholesterol homeostasis in the brain.

18.
Purinergic Signal ; 2(4): 651-61, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18404468

RESUMEN

Wound healing is a complex sequence of cellular and molecular processes that involves multiple cell types and biochemical mediators. Several growth factors have been identified that regulate tissue repair, including the neurotrophin nerve growth factor (NGF). As non-adenine based purines (NABPs) are known to promote cell proliferation and the release of growth factors, we investigated whether NABPs had an effect on wound healing. Full-thickness, excisional wound healing in healthy BALB/c mice was significantly accelerated by daily topical application of NABPs such as guanosine (50% closure by days 2.5-2.8). Co-treatment of wounds with guanosine plus anti-NGF reversed the guanosine-promoted acceleration of wound healing, indicating that this effect of guanosine is mediated, at least in part, by NGF. Selective inhibitors of the NGF-inducible serine/threonine protein kinase (protein kinase N), such as 6-methylmercaptopurine riboside abolished the acceleration of wound healing caused by guanosine, confirming that activation of this enzyme is required for this effect of guanosine. Treatment of genetically diabetic BKS.Cg-m+/+lepr db mice, which display impaired wound healing, with guanosine led to accelerated healing of skin wounds (25% closure by days 2.8-3.0). These results provide further confirmation that the NABP-mediated acceleration of cutaneous wound healing is mediated via an NGF-dependent mechanism. Thus, NABPs may offer an alternative and viable approach for the treatment of wounds in a clinical setting.

19.
Eur J Neurosci ; 20(6): 1514-24, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15355318

RESUMEN

Cysteinyl-leukotrienes (cys-LTs), potent mediators in inflammatory diseases, are produced by nervous tissue, but their cellular source and role in the brain are not very well known. In this report we have demonstrated that rat cultured astrocytes express the enzymes (5'-lipoxygenase and LTC(4) synthase) required for cys-LT production, and release cys-LTs in resting condition and, to a greater extent, in response to calcium ionophore A23187, 1 h combined oxygen-glucose deprivation or 2-methyl-thioATP, a selective P2Y(1)/ATP receptor agonist. MK-886, a LT synthesis inhibitor, prevented basal and evoked cys-LT release. In addition, 2-methyl-thioATP-induced cys-LT release was abolished by suramin, a P2 receptor antagonist, or by inhibitors of ATP binding cassette proteins involved in cys-LT release. We also showed that astrocytes express cys-LT(1) and not cys-LT(2) receptors. The stimulation of these receptors by LTD(4) activated the mitogen-activated protein kinase (MAPK) pathway. This effect was: (i) insensitive to inhibitors of receptor-coupled Gi protein (pertussis toxin) or tyrosine kinase receptors (genistein); (ii) abolished by MK-571, a cys-LT(1) selective receptor antagonist, or PD98059, a MAPK inhibitor; (iii) reduced by inhibitors of calcium/calmodulin-dependent kinase II (KN-93), Ca(2+)-dependent and -independent (GF102903X) or Ca(2+)-dependent (Gö6976) protein kinase C isoforms. LTD(4) also increased astrocyte proliferation and glial fibrillary acidic protein content, which are considered hallmarks of reactive astrogliosis. Both effects were counteracted by cell pretreatment with MK-571 or PD98059. Thus, cys-LTs released from astrocytes might play an autocrine role in the induction of reactive astrogliosis that, in brain injuries, contributes to the formation of a reparative glial scar.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Astrocitos/metabolismo , Corteza Cerebral/citología , Cisteína/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Leucotrienos/metabolismo , Proteínas de la Membrana/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Receptores de Leucotrienos/fisiología , Adenosina Trifosfato/farmacología , Animales , Animales Recién Nacidos , Northern Blotting/métodos , Western Blotting/métodos , Calcimicina/farmacología , División Celular/fisiología , Supervivencia Celular , Células Cultivadas , Corteza Cerebral/metabolismo , Cisteína/clasificación , Cisteína/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Glucosa/deficiencia , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Hipoxia , Técnicas para Inmunoenzimas/métodos , Ionóforos/farmacología , Leucotrienos/clasificación , Leucotrienos/farmacología , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Tionucleótidos/farmacología , Timidina/metabolismo , Factores de Tiempo , Tritio/metabolismo
20.
Glia ; 46(4): 356-68, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15095366

RESUMEN

Guanosine has many trophic effects in the CNS, including the stimulation of neurotrophic factor synthesis and release by astrocytes, which protect neurons against excitotoxic death. Therefore, we questioned whether guanosine protected astrocytes against apoptosis induced by staurosporine. We evaluated apoptosis in cultured rat brain astrocytes, following exposure (3 h) to 100 nM staurosporine by acridine orange staining or by oligonucleosome, or caspase-3 ELISA assays. Staurosporine promoted apoptosis rapidly, reaching its maximal effect (approximately 10-fold over basal apoptotic values) in 18-24 h after its administration to astrocytes. Guanosine, added to the culture medium for 4 h, starting from 1 h prior to staurosporine, reduced the proportion of apoptotic cells in a concentration-dependent manner. The IC50 value for the inhibitory effect of guanosine is 7.5 x 10(-5) M. The protective effect of guanosine was not affected by inhibiting the nucleoside transporters by propentophylline, or by the selective antagonists of the adenosine A1 or A2 receptors (DPCPX or DMPX), or by an antagonist of the P2X and P2Y purine receptors (suramin). In contrast, pretreatment of astrocytes with pertussis toxin, which uncouples Gi-proteins from their receptors, abolished the antiapoptotic effect of guanosine. The protective effect of guanosine was also reduced by pretreatment of astrocytes with inhibitors of the phosphoinositide 3-kinase (PI3K; LY294002, 30 microM) or the MAPK pathway (PD98059, 10 microM). Addition of guanosine caused a rapid phosphorylation of Akt/PKB, and glycogen synthase kinase-3beta (GSK-3beta) and induced an upregulation of Bcl-2 mRNA and protein expression. These data demonstrate that guanosine protects astrocytes against staurosporine-induced apoptosis by activating multiple pathways, and these are mediated by a Gi-protein-coupled putative guanosine receptor.


Asunto(s)
Apoptosis/fisiología , Astrocitos/metabolismo , Guanosina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Caspasa 3 , Caspasas/metabolismo , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Guanosina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Antagonistas Purinérgicos , Antagonistas de Receptores Purinérgicos P1 , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Receptores Purinérgicos/metabolismo , Receptores Purinérgicos P1/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...