Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Sensors (Basel) ; 21(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071694

RESUMEN

Cerebrospinal fluid (CSF) analysis supports diagnosis of neurodegenerative diseases (NDs), however a number of issues limits its potentialities in clinical practice. Here, a newly developed technique for fluid voltammetry, relying on a simple sensor (BIOsensor-based multisensorial system for mimicking Nose, Tongue and Eyes, BIONOTE), was used to test the applicability for CSF analysis. BIONOTE was initially calibrated on an artificial CSF-like solution and then applied on human CSF, either immediately after collection or after refrigerated storage. Following optimization, it was used to evaluate 11 CSF samples correlating the electrochemical dataset with CSF routine parameters and biomarkers of neurodegeneration. Multivariate data analysis was performed for model elaboration and calibration using principal component analysis and partial least squares discriminant analysis. BIONOTE presented a high capacity to predict both physiological and pathological constituents of artificial CSF. It differentiated distinct fresh human CSF samples well but lost accuracy after refrigerated storage. The electrochemical analysis-derived data correlated with either CSF routine cytochemical indexes or a biomarker of neurodegeneration. BIONOTE resulted as being a reliable system for electrochemical analysis of CSF. The CSF fingerprint provided by the sensor has shown itself to be sensitive to CSF modification, thus it is potentially representative of CSF alteration. This result opens the way to its testing in further study addressed at assessing the clinical relevance of the methodology. Because of its advantages due to the ease and rapidity of the methodology, a validation study is now required to translate the technique into clinical practice and improve diagnostic workup of NDs.


Asunto(s)
Técnicas Biosensibles , Enfermedades Neurodegenerativas , Biomarcadores , Análisis Discriminante , Humanos
2.
J Allergy Clin Immunol ; 143(5): 1811-1820.e7, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30529449

RESUMEN

BACKGROUND: Severe asthma is a heterogeneous condition, as shown by independent cluster analyses based on demographic, clinical, and inflammatory characteristics. A next step is to identify molecularly driven phenotypes using "omics" technologies. Molecular fingerprints of exhaled breath are associated with inflammation and can qualify as noninvasive assessment of severe asthma phenotypes. OBJECTIVES: We aimed (1) to identify severe asthma phenotypes using exhaled metabolomic fingerprints obtained from a composite of electronic noses (eNoses) and (2) to assess the stability of eNose-derived phenotypes in relation to within-patient clinical and inflammatory changes. METHODS: In this longitudinal multicenter study exhaled breath samples were taken from an unselected subset of adults with severe asthma from the U-BIOPRED cohort. Exhaled metabolites were analyzed centrally by using an assembly of eNoses. Unsupervised Ward clustering enhanced by similarity profile analysis together with K-means clustering was performed. For internal validation, partitioning around medoids and topological data analysis were applied. Samples at 12 to 18 months of prospective follow-up were used to assess longitudinal within-patient stability. RESULTS: Data were available for 78 subjects (age, 55 years [interquartile range, 45-64 years]; 41% male). Three eNose-driven clusters (n = 26/33/19) were revealed, showing differences in circulating eosinophil (P = .045) and neutrophil (P = .017) percentages and ratios of patients using oral corticosteroids (P = .035). Longitudinal within-patient cluster stability was associated with changes in sputum eosinophil percentages (P = .045). CONCLUSIONS: We have identified and followed up exhaled molecular phenotypes of severe asthma, which were associated with changing inflammatory profile and oral steroid use. This suggests that breath analysis can contribute to the management of severe asthma.


Asunto(s)
Asma/diagnóstico , Nariz Electrónica , Eosinófilos/patología , Inflamación/diagnóstico , Neutrófilos/patología , Adulto , Pruebas Respiratorias , Análisis por Conglomerados , Estudios de Cohortes , Progresión de la Enfermedad , Espiración , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Índice de Severidad de la Enfermedad
3.
Micromachines (Basel) ; 9(7)2018 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-30424276

RESUMEN

The study of ladder networks made by sequences of directly coupled inductor⁻capacitor single cells has led us to discover a new property, which may be of certain interest in the sensor field. In the case of n cells, the n-frequencies vector characterizing each node may allow for the identification of that capacitor (sensor), which has experienced a variation of its nominal value. This localization is possible independently from the observable node of the ladder network as proven by the application of the following multivariate data analysis techniques: principal component analysis and partial least square discriminant analysis. This property can be applied on a large scale down to micrometric dimensions in agreement with the technologic ability to shrink the capacitive sensor dimensions.

4.
Front Chem ; 6: 327, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30148129

RESUMEN

This paper presents an advanced voltammetric system to be used as electronic tongue for liquid and gas analysis. It has been designed to be more flexible and accurate with respect to other existing and similar systems. It features improved electronics and additional operative conditions. Among others these include the possibility to optically excite the solution and to treat the output signal by a differentiation process in order to better evidence the existence of small details in the response curve. Finally by the same type of tongue preliminary results are shown dealing with O2 and CO2 concentration measurements in appropriate solutions.

5.
PLoS One ; 13(6): e0199997, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29953554

RESUMEN

Pheromones are known to play an important role in butterfly courtship and may influence both individual reproductive success and reproductive isolation between species. Recent studies have focused on courtship in Hipparchia butterflies (Nymphalidae: Satyrinae) emphasizing morphological and behavioural traits, as well as genetic differences. Behavioural observations suggested a role for chemical cues in mate and species recognition, where the androconial scales on the forewings of these species may be involved in chemical communication between individuals. Cchemical-mediated signals have received relatively little attention in this genus. Here, we report the results of a three-year investigation of the volatile organic compounds (VOCs) released by Hipparchia fagi and H. hermione in order to identify differences in VOCs between these species where they live in syntopy. Our study was carried out using an array of cross-selective sensors known as an "Electronic Nose" (EN) that operates by converting chemical patterns into patterns of sensor signals. While the identity of volatile compounds remained unknown, sensor signals can be compared to identify similar or dissimilar chemical patterns. Based on the EN signals, our results showed that: 1) the two sexes have a similar VOCs pattern in H. fagi, while they significantly diverge in H. hermione; 2) VOCs patterns were different between females of the two species, while those of males were not.


Asunto(s)
Comunicación Animal , Mariposas Diurnas/fisiología , Feromonas/metabolismo , Animales , Mariposas Diurnas/clasificación , Especificidad de la Especie
6.
Front Pharmacol ; 9: 258, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29719507

RESUMEN

Background: Prospective pharmacological studies on breathomics profiles in COPD patients have not been previously reported. We assessed the effects of treatment and withdrawal of an extrafine inhaled corticosteroid (ICS)-long-acting ß2-agonist (LABA) fixed dose combination (FDC) using a multidimensional classification model including breathomics. Methods: A pilot, proof-of-concept, pharmacological study was undertaken in 14 COPD patients on maintenance treatment with inhaled fluticasone propionate/salmeterol (500/50 µg b.i.d.) for at least 8 weeks (visit 1). Patients received 2-week treatment with inhaled beclomethasone dipropionate/formoterol (100/6 µg b.i.d.) (visit 2), 4-week treatment with formoterol alone (6 µg b.i.d.) (visit 3), and 4-week treatment with beclomethasone/formoterol (100/6 µg b.i.d.) (visit 4). Exhaled breath analysis with two e-noses, based on different technologies, and exhaled breath condensate (EBC) NMR-based metabolomics were performed. Sputum cell counts, sputum supernatant and EBC prostaglandin E2 (PGE2) and 15-F2t-isoprostane, fraction of exhaled nitric oxide, and spirometry were measured. Results: Compared with formoterol alone, EBC acetate and sputum PGE2, reflecting airway inflammation, were reduced after 4-week beclomethasone/formoterol. Three independent breathomics techniques showed that extrafine beclomethasone/formoterol short-term treatment was associated with different breathprints compared with regular fluticasone propionate/salmeterol. Either ICS/LABA FDC vs. formoterol alone was associated with increased pre-bronchodilator FEF25-75% and FEV1/FVC (P = 0.008-0.029). The multidimensional model distinguished fluticasone propionate/salmeterol vs. beclomethasone/formoterol, fluticasone propionate/salmeterol vs. formoterol, and formoterol vs. beclomethasone/formoterol (accuracy > 70%, P < 0.01). Conclusions: Breathomics could be used for assessing ICS treatment and withdrawal in COPD patients. Large, controlled, prospective pharmacological trials are required to clarify the biological implications of breathomics changes. EUDRACT number: 2012-001749-42.

7.
Sensors (Basel) ; 17(11)2017 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-29143768

RESUMEN

The aim of this work is the development of a contactless capacitive sensory system for the detection of (Electrocardiographic) ECG-like signals. The acquisition approach is based on a capacitive coupling with the patient body performed by electrodes integrated in a front-end circuit. The proposed system is able to detect changes in the electric charge related to the heart activity. Due to the target signal weakness and to the presence of other undesired signals, suitable amplification stages and analogue filters are required. Simulated results allowed us to evaluate the effectiveness of the approach, whereas experimental measurements, recorded without contact to the skin, have validated the practical effectiveness of the proposed architecture. The system operates with a supply voltage of ±9 V with an overall power consumption of about 10 mW. The analogue output of the electronic interface is connected to an ATmega328 microcontroller implementing the A/D conversion and the data acquisition. The collected data can be displayed on any multimedia support for real-time tracking applications.


Asunto(s)
Electrocardiografía , Electrodos , Diseño de Equipo , Humanos , Procesamiento de Señales Asistido por Computador
8.
J Breath Res ; 10(1): 016007, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26857451

RESUMEN

Exhaled breath contains hundreds of volatile organic compounds (VOCs). Several independent researchers point out that the breath of lung cancer patients shows a characteristic VOC-profile which can be considered as lung cancer signature and, thus, used for diagnosis. In this regard, the analysis of exhaled breath with gas sensor arrays is a potential non-invasive, relatively low-cost and easy technique for the early detection of lung cancer. This clinical study evaluated the gas sensor array response for the identification of the exhaled breath of lung cancer patients. This study involved 146 individuals: 70 with lung cancer confirmed by computerized tomography (CT) or positron emission tomography-(PET) imaging techniques and histology (biopsy) or with clinical suspect of lung cancer and 76 healthy controls. Their exhaled breath was measured with a gas sensor array composed of a matrix of eight quartz microbalances (QMBs), each functionalized with a different metalloporphyrin. The instrument produces, for each analyzed sample, a vector of signals encoding the breath (breathprint). Breathprints were analyzed with multivariate analysis in order to correlate the sensor signals to the disease. Breathprints of the lung cancer patients were differentiated from those of the healthy controls with a sensitivity of 81% and specificity of 91%. Similar values were obtained in patients with and without metabolic comorbidities, such as diabetes, obesity and dyslipidemia (sensitivity 85%, specificity 88% and sensitivity 76%, specificity 94%, respectively). The device showed a large sensitivity to lung cancer at stage I with respect to stage II/III/IV (92% and 58% respectively). The sensitivity for stage I did not change for patients with or without metabolic comorbidities (90%, 94%, respectively). Results show that this electronic nose can discriminate the exhaled breath of the lung cancer patients from those of the healthy controls. Moreover, the largest sensitivity is observed for the subgroup of patients with a lung cancer at stage I.


Asunto(s)
Pruebas Respiratorias/métodos , Detección Precoz del Cáncer/métodos , Neoplasias Pulmonares/diagnóstico , Compuestos Orgánicos Volátiles/análisis , Anciano , Anciano de 80 o más Años , Nariz Electrónica , Espiración , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad
9.
Sci Rep ; 5: 16491, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26559776

RESUMEN

Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.


Asunto(s)
Biomarcadores de Tumor , Espiración , Neoplasias Pulmonares/metabolismo , Compuestos Orgánicos Volátiles , Anciano , Nariz Electrónica , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Neoplasias Pulmonares/diagnóstico , Masculino , Persona de Mediana Edad
10.
Sleep Breath ; 19(2): 623-30, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25323296

RESUMEN

INTRODUCTION: In obstructive sleep apnea syndrome (OSAS), exhaled volatile organic compounds (VOCs) change after long-term continuous positive airway pressure (CPAP). The objective of the study was to verify whether changes in VOCs pattern are detectable after the first night of CPAP and to identify correlates, if any, of these changes. METHODS: Fifty OSAS patients underwent a multidimensional assessment and breath print (BP) analysis through 28 sensors e-nose at baseline and after the first night of CPAP. Boxplots of individual BP evolution after CPAP and groups were compared by ANOVA and Fisher's exact t. Partial least square discriminant analysis (PLS-DA), with leave-one-out as cross-validation was used to calculate to which extent basal BP could predicts changes in apnea-hypopnea index (AHI). RESULTS: CPAP was effective in all the patients (delta AHI 35.8 events/h; residual AHI 6.0 events/h). BP dramatically changed after a single-night CPAP and changes conformed to two well-distinguished patterns: pattern C (n = 29), characterized by consonant boxplots, and pattern D (n = 21), with variably discordant boxplots. The average number of comorbid diseases (1.55 [standard deviation, SD 1.0] in group C, 3.14 [SD 1.8] in group D, p < 0.001) and the prevalence of selected comorbidity (diabetes mellitus, metabolic syndrome, and chronic heart failure), were the only features distinguishing groups. CONCLUSION: We found that BP change after a single night of CPAP largely depends upon comorbidity. Comorbidity likely contributes to phenotypic variability in OSAS population. BP might qualify as a surrogate index of the response to and, later, compliance with CPAP.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Polisomnografía , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/terapia , Compuestos Orgánicos Volátiles/análisis , Anciano , Biomarcadores , Comorbilidad , Complicaciones de la Diabetes/diagnóstico , Complicaciones de la Diabetes/epidemiología , Complicaciones de la Diabetes/terapia , Nariz Electrónica , Femenino , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/terapia , Humanos , Masculino , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/epidemiología , Síndrome Metabólico/terapia , Persona de Mediana Edad , Cooperación del Paciente , Apnea Obstructiva del Sueño/epidemiología , Estadística como Asunto , Resultado del Tratamiento
11.
Sensors (Basel) ; 13(12): 16625-40, 2013 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-24304640

RESUMEN

Sensors are often organized in multidimensional systems or networks for particular applications. This is facilitated by the large improvements in the miniaturization process, power consumption reduction and data analysis techniques nowadays possible. Such sensors are frequently organized in multidimensional arrays oriented to the realization of artificial sensorial systems mimicking the mechanisms of human senses. Instruments that make use of these sensors are frequently employed in the fields of medicine and food science. Among them, the so-called electronic nose and tongue are becoming more and more popular. In this paper an innovative multisensorial system based on sensing materials of biological origin is illustrated. Anthocyanins are exploited here as chemical interactive materials for both quartz microbalance (QMB) transducers used as gas sensors and for electrodes used as liquid electrochemical sensors. The optical properties of anthocyanins are well established and widely used, but they have never been exploited as sensing materials for both gas and liquid sensors in non-optical applications. By using the same set of selected anthocyanins an integrated system has been realized, which includes a gas sensor array based on QMB and a sensor array for liquids made up of suitable Ion Sensitive Electrodes (ISEs). The arrays are also monitored from an optical point of view. This embedded system, is intended to mimic the working principles of the nose, tongue and eyes. We call this setup BIONOTE (for BIOsensor-based multisensorial system for mimicking NOse, Tongue and Eyes). The complete design, fabrication and calibration processes of the BIONOTE system are described herein, and a number of preliminary results are discussed. These results are relative to: (a) the characterization of the optical properties of the tested materials; (b) the performance of the whole system as gas sensor array with respect to ethanol, hexane and isopropyl alcohol detection (concentration range 0.1-7 ppm) and as a liquid sensor array (concentration range 73-98 µM).


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Diseño de Equipo/instrumentación , Ensayo de Materiales/instrumentación , Electrodos , Nariz Electrónica , Humanos , Miniaturización/métodos , Transductores
12.
Eur Respir J ; 42(3): 802-25, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23397306

RESUMEN

Inflammatory lung diseases are highly complex in respect of pathogenesis and relationships between inflammation, clinical disease and response to treatment. Sophisticated large-scale analytical methods to quantify gene expression (transcriptomics), proteins (proteomics), lipids (lipidomics) and metabolites (metabolomics) in the lungs, blood and urine are now available to identify biomarkers that define disease in terms of combined clinical, physiological and patho-biological abnormalities. The aspiration is that these approaches will improve diagnosis, i.e. define pathological phenotypes, and facilitate the monitoring of disease and therapy, and also, unravel underlying molecular pathways. Biomarker studies can either select predefined biomarker(s) measured by specific methods or apply an "unbiased" approach involving detection platforms that are indiscriminate in focus. This article reviews the technologies presently available to study biomarkers of lung disease within the 'omics field. The contributions of the individual 'omics analytical platforms to the field of respiratory diseases are summarised, with the goal of providing background on their respective abilities to contribute to systems medicine-based studies of lung disease.


Asunto(s)
Biomarcadores/metabolismo , Enfermedades Pulmonares/metabolismo , Pruebas Respiratorias/métodos , Líquido del Lavado Bronquioalveolar/química , Cromatografía Liquida , Perfilación de la Expresión Génica/métodos , Humanos , Inflamación , Metabolismo de los Lípidos , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/inmunología , Espectrometría de Masas/métodos , Metabolómica/métodos , Fenotipo , Neumonía/genética , Neumonía/metabolismo , Proteómica/métodos , Esputo/química
13.
Sensors (Basel) ; 13(1): 550-64, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23282585

RESUMEN

The propagation of the fundamental quasi-symmetric Lamb mode S(0) travelling along 3C-SiC/c-AlN composite plates is theoretically studied with respect to the AlN and SiC film thickness, the acoustic wave propagation direction and the electrical boundary conditions. The temperature effects on the phase velocity have been considered for four AlN/SiC-based electroacoustic coupling configurations, specifically addressing the design of temperature-compensated, enhanced-coupling, GHz-range electroacoustic devices. The gravimetric sensitivity and resolution of the four temperature-stable SiC/AlN composite structures are theoretically investigated with respect to both the AlN and SiC sensing surface. The SiC/AlN-based sensor performances are compared to those of surface acoustic waves and Lamb S(0) mode mass sensors implemented on bulk conventional piezoelectric materials and on thin suspended membranes.

14.
PLoS One ; 7(10): e45396, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23077492

RESUMEN

BACKGROUND: The electronic nose (e nose) provides distinctive breath fingerprints for selected respiratory diseases. Both reproducibility and respiratory function correlates of breath fingerprint are poorly known. OBJECTIVES: To measure reproducibility of breath fingerprints and to assess their correlates among respiratory function indexes in elderly healthy and COPD subjects. METHOD: 25 subjects (5 COPD patients for each GOLD stage and 5 healthy controls) over 65 years underwent e-nose study through a seven sensor system and respiratory function tests at times 0, 7, and 15 days. Reproducibility of the e nose pattern was computed. The correlation between volatile organic compound (VOC) pattern and respiratory function/clinical parameters was assessed by the Spearman's rho. MEASUREMENTS AND MAIN RESULTS: VOC patterns were highly reproducible within healthy and GOLD 4 COPD subjects, less among GOLD 1-3 patients.VOC patterns significantly correlated with expiratory flows (Spearman's rho ranging from 0.36 for MEF25% and sensor Co-Buti-TPP, to 0.81 for FEV1% and sensor Cu-Buti-TPP p<0.001)), but not with residual volume and total lung capacity. CONCLUSIONS: VOC patterns strictly correlated with expiratory flows. Thus, e nose might conveniently be used to assess COPD severity and, likely, to study phenotypic variability. However, the suboptimal reproducibility within GOLD 1-3 patients should stimulate further research to identify more reproducible breath print patterns.


Asunto(s)
Pruebas Respiratorias , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Anciano , Estudios de Casos y Controles , Ejercicio Físico , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Compuestos Orgánicos Volátiles/análisis
15.
Expert Opin Med Diagn ; 6(3): 175-85, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-23480684

RESUMEN

INTRODUCTION: The early determination of serious pathologies has so far been an important issue in both the medical and social fields. The search for an instrument able to detect cancers has led to the consideration of the usage of chemicals of the human body, which carry, through its volatile compounds, information coming from or related to defined pathologies. AREAS COVERED: The electronic nose (EN) seems to represent a good solution for the detection of cancers of different types. Recent results showed the utility of an EN to smell chemicals related to lung, melanoma, prostatic, breast and pancreatic cancers. The results obtainable from ENs are chemical images and, as it will be shown in this paper, the probability of cancer recognition is rather high. Main results obtained at international level and by the authors of this paper will be commented upon. EXPERT OPINION: A personal opinion is given trying to foresee future developments of the olfaction strategy. To this purpose, two main aspects are considered: looking for better overall stability of the EN and for a new use of ENs in detecting alterations between blood and pathology components.

16.
Nanotechnology ; 22(46): 465401, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-22024724

RESUMEN

In this work we analyze the coupled piezoelectric and semiconductive behavior of vertically aligned ZnO nanowires under uniform compression. The screening effect on the piezoelectric field caused by the free carriers in vertically compressed zinc oxide nanowires (NWs) has been computed by means of both analytical considerations and finite element calculations. We predict that, for typical geometries and donor concentrations, the length of the NW does not significantly influence the maximum output piezopotential because the potential mainly drops across the tip, so that relatively short NWs can be sufficient for high-efficiency nanogenerators, which is an important result for wet-chemistry fabrication of low-cost, CMOS- or MEMS-compatible nanogenerators. Furthermore, simulations reveal that the dielectric surrounding the NW influences the output piezopotential, especially for low donor concentrations. Other parameters such as the applied force, the sectional area and the donor concentration have been varied in order to understand their effects on the output voltage of the nanogenerator.

17.
Analyst ; 136(23): 4966-76, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21971176

RESUMEN

A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined by potentiometric and optical techniques. Pt porphyrin-based devices were found to exhibit enhanced potentiometric selectivity toward iodide ion compared to electrodes based on a typical anion-exchanger (e.g. tridodecylmethylammonium chloride). It is shown that Pt(II)-porphyrins function as neutral anion carriers within the electrode membranes, while those based on Pt(IV)TPPCl(2) operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged porphyrin dimers occurs in the membrane plasticized both with high or low dielectric constant plasticizer, due to a low oxophilicity of central Pt. The computational study of various anion-Pt(IV)TPPCl(2) complex formation by means of semi-empirical and density functional theory (DFT) methods revealed a good correlation between calculated and measured ionophore selectivity.

18.
Analyst ; 135(6): 1245-52, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20405062

RESUMEN

Physiological investigations suggest that the olfactory mucosa probably plays an ancillary role in the recognition of odours introducing a sort of chromatographic separation that, together with the zonal distribution of olfactory receptors, gives place to selective spatio-temporal response patterns. It has been recently suggested that this behaviour may be simulated by chemical sensors embedded in continuous polymer layers. In this paper, in analogy to the biology of olfaction, a simple and compact platform able to separate and detect gases and vapours on the basis of their diffusion properties is proposed. In such a system, broadly selective colour indicators, such as metalloporphyrins, are embedded in continuous layers of polymers with different sorption properties. The exposure to various alcohols and amines shows that the porphyrins are mainly responsible for the recognition of the molecular family, while the occurring spatio-temporal signal patterns make possible the identification of the individual chemical species.


Asunto(s)
Cromatografía de Gases/métodos , Polímeros/química , Colorantes/química , Metaloporfirinas/química , Odorantes/análisis , Mucosa Olfatoria/fisiología
19.
Anal Bioanal Chem ; 397(2): 613-21, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20237916

RESUMEN

Interest in the use of the optical properties of chemical indicators is growing steadily. Among the optical methods that can be used to capture changes in sensing layers, those producing images of large-area devices are particularly interesting for chemical sensor array development. Until now, few studies addressed the characterization of image sensors from the point of view of their chemical sensor application. In this paper, a method to evaluate such performance is proposed. It is based on the simultaneous measurement of absorption events in a metalloporphyrin layer with an image sensor and a quartz microbalance (QMB). Exploiting the well-known behaviour of QMB, comparison of signals enables estimation of the minimum amount of absorbed molecules that the image sensor can detect. Results indicate that at the single pixel level a standard image sensor (for example a webcam) can easily detect femtomoles of absorbed molecules. It should therefore be possible to design sensor arrays in which the pixels of images of large-area sensing layers are regarded as individual chemical sensors providing a ready and simple method for large sensor array development.

20.
Chest ; 137(4): 790-6, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20081096

RESUMEN

BACKGROUND: Analysis of exhaled breath by biosensors discriminates between patients with asthma and healthy subjects. An electronic nose consists of a chemical sensor array for the detection of volatile organic compounds (VOCs) and an algorithm for pattern recognition. We compared the diagnostic performance of a prototype of an electronic nose with lung function tests and fractional exhaled nitric oxide (FENO) in patients with atopic asthma. METHODS: A cross-sectional study was undertaken in 27 patients with intermittent and persistent mild asthma and in 24 healthy subjects. Two procedures for collecting exhaled breath were followed to study the differences between total and alveolar air. Seven patients with asthma and seven healthy subjects participated in a study with mass spectrometry (MS) fingerprinting as an independent technique for assessing between group discrimination. Classification was based on principal component analysis and a feed-forward neural network. RESULTS: The best results were obtained when the electronic nose analysis was performed on alveolar air. Diagnostic performance for electronic nose, FENO, and lung function testing was 87.5%, 79.2%, and 70.8%, respectively. The combination of electronic nose and FENO had the highest diagnostic performance for asthma (95.8%). MS fingerprints of VOCs could discriminate between patients with asthma and healthy subjects. CONCLUSIONS: The electronic nose has a high diagnostic performance that can be increased when combined with FENO. Large studies are now required to definitively establish the diagnostic performance of the electronic nose. Whether this integrated noninvasive approach will translate into an early diagnosis of asthma has to be clarified. TRIAL REGISTRATION: EUDRACT https://eudralink.emea.europa.eu; Identifier: 2007-000890-51; and clinicaltrials.gov; Identifier: NCT00819676.


Asunto(s)
Asma/diagnóstico , Asma/metabolismo , Técnicas Biosensibles , Pruebas Respiratorias , Óxido Nítrico/metabolismo , Pruebas de Función Respiratoria , Adulto , Algoritmos , Asma/fisiopatología , Estudios de Casos y Controles , Estudios Transversales , Pruebas Diagnósticas de Rutina , Espiración , Femenino , Humanos , Pulmón/fisiopatología , Masculino , Espectrometría de Masas , Compuestos Orgánicos Volátiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA