Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Med ; 30(5): 1276-1283, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769431

RESUMEN

Cervical spinal cord injury (SCI) leads to permanent impairment of arm and hand functions. Here we conducted a prospective, single-arm, multicenter, open-label, non-significant risk trial that evaluated the safety and efficacy of ARCEX Therapy to improve arm and hand functions in people with chronic SCI. ARCEX Therapy involves the delivery of externally applied electrical stimulation over the cervical spinal cord during structured rehabilitation. The primary endpoints were safety and efficacy as measured by whether the majority of participants exhibited significant improvement in both strength and functional performance in response to ARCEX Therapy compared to the end of an equivalent period of rehabilitation alone. Sixty participants completed the protocol. No serious adverse events related to ARCEX Therapy were reported, and the primary effectiveness endpoint was met. Seventy-two percent of participants demonstrated improvements greater than the minimally important difference criteria for both strength and functional domains. Secondary endpoint analysis revealed significant improvements in fingertip pinch force, hand prehension and strength, upper extremity motor and sensory abilities and self-reported increases in quality of life. These results demonstrate the safety and efficacy of ARCEX Therapy to improve hand and arm functions in people living with cervical SCI. ClinicalTrials.gov identifier: NCT04697472 .


Asunto(s)
Brazo , Mano , Cuadriplejía , Traumatismos de la Médula Espinal , Humanos , Cuadriplejía/terapia , Cuadriplejía/fisiopatología , Masculino , Mano/fisiopatología , Femenino , Persona de Mediana Edad , Adulto , Brazo/fisiopatología , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/rehabilitación , Estimulación de la Médula Espinal/métodos , Resultado del Tratamiento , Calidad de Vida , Estudios Prospectivos , Enfermedad Crónica , Anciano , Terapia por Estimulación Eléctrica/métodos , Terapia por Estimulación Eléctrica/efectos adversos
2.
Neurogenetics ; 25(2): 51-67, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38334933

RESUMEN

Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.


Asunto(s)
Glucosilceramidasa , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Glucosilceramidasa/genética , Italia , Mutación/genética , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/diagnóstico
3.
Front Cell Neurosci ; 17: 1213732, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396923

RESUMEN

Epilepsy is a neurological disorder characterized by recurrent seizures, which result from excessive, synchronous discharges of neurons in different brain areas. In about 30% of cases, epileptic discharges, which vary in their etiology and symptomatology, are difficult to treat with conventional drugs. Ferroptosis is a newly defined iron-dependent programmed cell death, characterized by excessive accumulation of lipid peroxides and reactive oxygen species. Evidence has been provided that ferroptosis is involved in epilepsy, and in particular in those forms resistant to drugs. Here, whole cell patch clamp recordings, in current and voltage clamp configurations, were performed from layer IV principal neurons in cortical slices obtained from adult mouse brain. Application of the ferroptosis inducer RAS-selective lethal 3 (RSL3) induced interictal epileptiform discharges which started at RSL3 concentrations of 2 µM and reached a plateau at 10 µM. This effect was not due to changes in active or passive membrane properties of the cells, but relied on alterations in synaptic transmission. In particular, interictal discharges were dependent on the excessive excitatory drive to layer IV principal cells, as suggested by the increase in frequency and amplitude of spontaneously occurring excitatory glutamatergic currents, possibly dependent on the reduction of inhibitory GABAergic ones. This led to an excitatory/inhibitory unbalance in cortical circuits. Interictal bursts could be prevented or reduced in frequency by the lipophilic antioxidant Vitamin E (30 µM). This study allows identifying new targets of ferroptosis-mediated epileptic discharges opening new avenues for the treatment of drug-resistant forms of epilepsy.

4.
Neuromodulation ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37269282

RESUMEN

OBJECTIVE: In adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel noninvasive neurotherapeutic approach combined with training may modulate the inherent developmental plasticity of children with SCI, providing even greater improvements than training or stimulation alone. Because children with SCI represent a vulnerable population, we first must establish the safety and feasibility of any potential novel therapeutic approach. The objectives of this pilot study were to determine the safety, feasibility, and proof of principle of cervical and thoracic scTS for short-term effect on upper extremity strength in children with SCI. MATERIALS AND METHODS: In this nonrandomized, within-subject repeated measure design, seven participants with chronic cervical SCI performed upper extremity motor tasks without and with cervical (C3-C4 and C6-C7) and thoracic (T10-T11) site scTS. Safety and feasibility of using cervical and thoracic sites scTS were determined by the frequency count of anticipated and unanticipated risks (eg, pain, numbness). Proof-of-principle concept was tested via change in force production during hand motor tasks. RESULTS: All seven participants tolerated cervical and thoracic scTS across the three days, with a wide range of stimulation intensities (cervical sites = 20-70 mA and thoracic site = 25-190 mA). Skin redness at the stimulation sites was observed in four of 21 assessments (19%) and dissipated in a few hours. No episode of autonomic dysreflexia was observed or reported. Hemodynamic parameters (systolic blood pressure and heart rate) remained within stable limits (p > 0.05) throughout the assessment time points at baseline, with scTS, and after the experiment. Hand-grip and wrist-extension strength increased (p < 0.05) with scTS. CONCLUSIONS: We indicated that short-term application of scTS via two cervical and one thoracic site is safe and feasible in children with SCI and resulted in immediate improvements in hand-grip and wrist-extension strength in the presence of scTS. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT04032990.

5.
Clin Neurophysiol ; 150: 56-68, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37004296

RESUMEN

OBJECTIVE: Spinal cord injury (SCI) is classified as complete or incomplete depending on the extent of sensorimotor preservation below the injury level. However, individuals with complete SCIs can voluntarily activate paralyzed lower limb muscles alone or by engaging non-paralyzed muscles during neurophysiological assessments, indicating presence of residual pathways across the injury. However, similar phenomena have not been explored for the upper extremity (UE) muscles following cervical SCIs. METHODS: Eighteen individuals with motor complete cervical SCI (AIS A or B) and five age-matched non-injured (NI) individuals performed various UE events against manual resistance during functional neurophysiological assessment (FNPA), and electromyographic (EMG) activity was recorded from UE muscles. RESULTS: Our findings demonstrated i) voluntary activation of clinically paralyzed muscles as evident from EMG readouts, ii) increased activity in these muscles during events engaging muscles above the injury level, iii) reduced spectral properties of paralyzed muscles in SCI compared to NI participants. CONCLUSIONS: Functional EMG activity in clinically paralyzed muscles indicate presence of residual pathways across the injury establishing supralesional control over the sublesional neural circuitry. SIGNIFICANCE: The findings may help explain the neurophysiological basis for UE recovery and can be exploited in designing rehabilitation techniques to facilitate UE recovery following cervical SCIs.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Humanos , Extremidad Superior , Músculos , Extremidad Inferior , Electromiografía/métodos
6.
Arch Phys Med Rehabil ; 104(1): 119-131, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35750207

RESUMEN

OBJECTIVE: To examine the efficacy, dosing, and safety profiles of intrathecal and oral baclofen in treating spasticity after spinal cord injury (SCI). DATA SOURCES: PubMed and Cochrane Databases were searched from 1970-2018 with keywords baclofen, spinal cord injury, and efficacy. STUDY SELECTION: The database search yielded 588 sources and 10 additional relevant publications. After removal of duplicates, 398 publications were screened. DATA EXTRACTION: Data were extracted using the following population, intervention, comparator, outcomes, and study designs criteria: studies including adult patients with SCI with spasticity; the intervention could be oral or intrathecal administration of baclofen; selection was inclusive for control groups, surgical management, rehabilitation, and alternative pharmaceutical agents; outcomes were efficacy, dosing, and adverse events. Randomized controlled trials, observational studies, and case reports were included. Meta-analyses and systematic reviews were excluded. DATA SYNTHESIS: A total of 98 studies were included with 1943 patients. Only 4 randomized, double-blinded, and placebo-controlled trials were reported. Thirty-nine studies examined changes in the Modified Ashworth Scale (MAS; 34 studies) and Penn Spasm scores (Penn Spasm Frequency; 19 studies), with average reductions of 1.7±1.3 and 1.6±1.4 in individuals with SCI, respectively. Of these data, a total of 6 of the 34 studies (MAS) and 2 of the 19 studies (Penn Spasm Frequency) analyzed oral baclofen. Forty-three studies addressed adverse events with muscle weakness and fatigue frequently reported. CONCLUSIONS: Baclofen is the most commonly-prescribed antispasmodic after SCI. Surprisingly, there remains a significant lack of large, placebo-controlled, double-blinded clinical trials, with most efficacy data arising from small studies examining treatment across different etiologies. In the studies reviewed, baclofen effectively improved spasticity outcome measures, with increased efficacy through intrathecal administration. Few studies assessed how reduced neural excitability affected residual motor function and activities of daily living. A host of adverse events were reported that may negatively affect quality of life. Comparative randomized controlled trials of baclofen and alternative treatments are warranted because these have demonstrated promise in relieving spasticity with reduced adverse events and without negatively affecting residual motor function.


Asunto(s)
Relajantes Musculares Centrales , Traumatismos de la Médula Espinal , Humanos , Adulto , Baclofeno , Relajantes Musculares Centrales/efectos adversos , Actividades Cotidianas , Calidad de Vida , Inyecciones Espinales/efectos adversos , Espasticidad Muscular/tratamiento farmacológico , Espasticidad Muscular/etiología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/tratamiento farmacológico , Espasmo/inducido químicamente , Espasmo/complicaciones , Espasmo/tratamiento farmacológico
7.
Antioxidants (Basel) ; 11(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36358497

RESUMEN

Redox imbalance, mitochondrial dysfunction, and inflammation play a major role in the pathophysiology of X-linked adrenoleukodystrophy (X-ALD), an inherited neurodegenerative disease caused by mutations in the ABCD1 gene, encoding the protein responsible for peroxisomal import and degradation of very long chain fatty acids (VLCFAs). Therefore, VLCFAs accumulate in tissues and plasma, constituting a pathognomonic biomarker for diagnosis. However, the precise role of VLCFA accumulation on the diverse clinical phenotypes of X-ALD and the pathogenic link between VLCFAs and oxidative stress remain currently unclear. This study proposes ferroptosis as a crucial contributor to the disease development and progression. The expression profiles of "GPX4-glutathione" and "NQO1-CoQ10" ferroptosis pathways have been analyzed in fibroblasts of one patient with AMN, the late onset and slowly progressive form of X-ALD, and in two patients with cALD, the cerebral inflammatory demyelinating form of early childhood. Furthermore, as no effective treatments are currently available, especially for the rapidly progressing form of X-ALD (cALD), the efficacy of NAC treatment has also been evaluated to open the way toward novel combined therapies. Our findings demonstrate that lipid peroxides accumulate in X-ALD fibroblasts and ferroptosis-counteracting enzymes are dysregulated, highlighting a different antioxidant response in patients with AMN and cALD.

8.
Eur J Hum Genet ; 30(8): 984-988, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35581417

RESUMEN

Krabbe disease (KD) is a rare lysosomal storage disorder caused by biallelic pathogenic variants in GALC. Most patients manifest the severe classic early-infantile form, while a small percentage of cases have later-onset types. We present two siblings with atypical clinical and neuroimaging phenotypes, compared to the classification of KD, who were found to carry biallelic loss-of-function GALC variants, including a recurrent 30 kb deletion and a previously unreported deep intronic variant that was identified by mRNA sequencing. This family represents a unique description in the KD literature and contributes to expanding the clinical and molecular spectra of this rare disorder.


Asunto(s)
Leucodistrofia de Células Globoides , Galactosilceramidasa/genética , Humanos , Intrones , Leucodistrofia de Células Globoides/genética , Mutación , Fenotipo , Hermanos
9.
Front Psychiatry ; 13: 851679, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280167

RESUMEN

Prenatal exposure to valproic acid (VPA) is a risk factor for autism spectrum disorder (ASD) in humans and it induces autistic-like behaviors in rodents. Imbalances between GABAergic and glutamatergic neurotransmission and increased oxidative stress together with altered glutathione (GSH) metabolism have been hypothesized to play a role in both VPA-induced embriotoxicity and in human ASD. N-acetylcysteine (NAC) is an antioxidant precursor of glutathione and a modulator of glutamatergic neurotransmission that has been tested in ASD, although the clinical studies currently available provided controversial results. Here, we explored the effects of repeated NAC (150 mg/kg) administration on core autistic-like features and altered brain GSH metabolism in the VPA (500 mg/kg) rat model of ASD. Furthermore, we measured the mRNA expression of genes encoding for scaffolding and transcription regulation proteins, as well as the subunits of NMDA and AMPA receptors and metabotropic glutamate receptors mGLUR1 and mGLUR5 in brain areas that are relevant to ASD. NAC administration ameliorated the social deficit displayed by VPA-exposed rats in the three-chamber test, but not their stereotypic behavior in the hole board test. Furthermore, NAC normalized the altered GSH levels displayed by these animals in the hippocampus and nucleus accumbens, and it partially rescued the altered expression of post-synaptic terminal network genes found in VPA-exposed rats, such as NR2a, MGLUR5, GLUR1, and GLUR2 in nucleus accumbens, and CAMK2, NR1, and GLUR2 in cerebellum. These data indicate that NAC treatment selectively mitigates the social dysfunction displayed by VPA-exposed rats normalizing GSH imbalance and reestablishing the expression of genes related to synaptic function in a brain region-specific manner. Taken together, these data contribute to clarify the behavioral impact of NAC in ASD and the molecular mechanisms that underlie its effects.

10.
Cell Death Dis ; 12(12): 1092, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795230

RESUMEN

Recent studies demonstrated reduced blood lysosomal acid lipase (LAL) activity in patients with nonalcoholic fatty liver disease (NAFLD). We aimed to verify hepatic LAL protein content and activity in in vitro and in vivo models of fat overload and in NAFLD patients. LAL protein content and activity were firstly evaluated in Huh7 cells exposed to high-glucose/high-lipid (HGHL) medium and in the liver of C57BL/6 mice fed with high-fat diet (HFD) for 4 and 8 months. LAL protein was also evaluated by immunohistochemistry in liver biopsies from 87 NAFLD patients and 10 controls, and correlated with hepatic histology. Huh7 cells treated with HGHL medium showed a significant reduction of LAL activity, which was consistent with reduced LAL protein levels by western blotting using an antibody towards the N-term of the enzyme. Conversely, antibodies towards the C-term of the enzyme evidenced LAL accumulation, suggesting a post-translational modification that masks the LAL N-term epitope and affects enzymatic activity. Indeed, we found a high rate of ubiquitination and extra-lysosomal localization of LAL protein in cells treated with HGHL medium. Consistent with these findings, inhibition of proteasome triggered dysfunctional LAL accumulation and affected LAL activity. Accumulation of ubiquitinated/dysfunctional LAL was also found in the liver of HFD fed mice. In NAFLD patients, hepatic levels of non-ubiquitinated/functional LAL were lower than in controls and inversely correlated with disease activity and some of the hallmarks of reduced LAL. Fat overload leads to LAL ubiquitination and impairs its function, possibly reducing hepatic fat disposal and promoting NAFLD activity.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Esterol Esterasa/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Transfección
11.
Nat Commun ; 12(1): 5850, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615867

RESUMEN

In children with spinal cord injury (SCI), scoliosis due to trunk muscle paralysis frequently requires surgical treatment. Transcutaneous spinal stimulation enables trunk stability in adults with SCI and may pose a non-invasive preventative therapeutic alternative. This non-randomized, non-blinded pilot clinical trial (NCT03975634) determined the safety and efficacy of transcutaneous spinal stimulation to enable upright sitting posture in 8 children with trunk control impairment due to acquired SCI using within-subject repeated measures study design. Primary safety and efficacy outcomes (pain, hemodynamics stability, skin irritation, trunk kinematics) and secondary outcomes (center of pressure displacement, compliance rate) were assessed within the pre-specified endpoints. One participant did not complete the study due to pain with stimulation on the first day. One episode of autonomic dysreflexia during stimulation was recorded. Following hemodynamic normalization, the participant completed the study. Overall, spinal stimulation was well-tolerated and enabled upright sitting posture in 7 out of the 8 participants.


Asunto(s)
Postura/fisiología , Traumatismos de la Médula Espinal/terapia , Columna Vertebral/fisiología , Adolescente , Fenómenos Biomecánicos , Niño , Preescolar , Femenino , Humanos , Masculino , Proyectos Piloto
12.
Sci Rep ; 11(1): 4897, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649353

RESUMEN

The cystic fibrosis (CF) community seeks to explain heterogeneous outcomes of pulmonary exacerbation (PEX) treatment. Serum and sputum inflammatory mediators may identify people with CF (PwCF) at risk for suboptimal responses. However, lack of an established association between response phenotypes and these mediators limits clinical application. In this pilot study, we prospectively characterized treatment response phenotypes by assessing health-related quality-of-life (HRQoL) during PEX. We also measured lung function and iron-related biochemical parameters in serum and sputum. We classified subjects as sustained symptom-responders (SRs) or non-sustained symptom-responders (NSRs) based on the absence or presence, respectively, of worsened symptom scores after initial improvement. We used linear mixed models (LMMs) to determine whether trends in lung function, hematologic, serum, and sputum indices of inflammation differed between response cohorts. In 20 PwCF, we identified 10 SRs and 10 NSRs with no significant differences in lung function at PEX onset and treatment durations. SRs had better model-predicted trends in lung function than NSRs during PEX. Non-linear trends in serum and sputum iron levels significantly differed between SRs and NSRs. In adults with cystic fibrosis, PEX treatment response phenotypes may be correlated with distinctive trends in serum and sputum iron concentrations.


Asunto(s)
Antibacterianos/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Hierro/sangre , Esputo/química , Adulto , Biomarcadores/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Brote de los Síntomas , Resultado del Tratamiento , Adulto Joven
13.
Front Sports Act Living ; 3: 797288, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35072064

RESUMEN

Purpose: To investigate how quadriceps muscle fatigue affects power production over the extension and flexion phases and muscle activation during maximal cycling. Methods: Ten participants performed 10-s maximal cycling efforts without fatigue and after 120 bilateral maximal concentric contractions of the quadriceps muscles. Extension power, flexion power and electromyographic (EMG) activity were compared between maximal cycling trials. We also investigated the associations between changes in quadriceps force during isometric maximal voluntary contractions (IMVC) and power output (flexion and extension) during maximal cycling, in addition to inter-individual variability in muscle activation and pedal force profiles. Results: Quadriceps IMVC (-52 ± 21%, P = 0.002), voluntary activation (-24 ± 14%, P < 0.001) and resting twitch amplitude (-45 ± 19%, P = 0.002) were reduced following the fatiguing task, whereas vastus lateralis (P = 0.58) and vastus medialis (P = 0.15) M-wave amplitudes were unchanged. The reductions in extension power (-15 ± 8%, P < 0.001) and flexion power (-24 ± 18%, P < 0.001) recorded during maximal cycling with fatigue of the quadriceps were dissociated from the decreases in quadriceps IMVC. Peak EMG decreased across all muscles while inter-individual variability in pedal force and EMG profiles increased during maximal cycling with quadriceps fatigue. Conclusion: Quadriceps fatigue induced by voluntary contractions led to reduced activation of all lower limb muscles, increased inter-individual variability and decreased power production during maximal cycling. Interestingly, power production was further reduced over the flexion phase (24%) than the extension phase (15%), likely due to larger levels of peripheral fatigue developed in RF muscle and/or a higher contribution of the quadriceps muscle to flexion power production compared to extension power during maximal cycling.

14.
J Neurophysiol ; 123(5): 1969-1978, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32292098

RESUMEN

Paired corticospinal-motoneuronal stimulation (PCMS) is the repeated pairing of transcranial magnetic stimulation (TMS) with peripheral nerve stimulation to modify corticospinal synapses; however, it has yet to be determined whether PCMS modulates cortical excitability in a manner similar to paired-associative stimulation protocols. In this study, we first examined the effects of PCMS on adductor pollicis motor evoked potentials (MEPs). In experiment 1, on 2 separate days PCMS (repetitive, high-intensity TMS and ulnar nerve stimulation pairs; 1.5-ms interstimulus interval; 0.1 Hz) was compared with control conditioning of repetitive high-intensity TMS-only stimuli (0.1 Hz). Before and after conditioning, adductor pollicis MEPs were elicited using low-intensity TMS in three different coil orientations to preferentially activate corticospinal axons directly (thus bypassing cortical effects) or indirectly (cortical effects present). Unexpectedly, similar MEP increases were seen for all orientations on both PCMS (129 to 136% of baseline) and control days (108 to 129% of baseline). Given the common factor between conditioning protocols was repeated, high-intensity TMS, further experiments were performed to characterize this repetitive TMS (rTMS) protocol. In experiment 2, an intensity dependence of the rTMS protocol was revealed by a lack of change in MEPs elicited after repetitive low-intensity TMS (0.1 Hz; P = 0.37). In experiment 3, MEP recruitment curve and paired pulse analyses showed that the high-intensity rTMS protocol increased MEPs over a range of stimulus intensities but that effects were not accompanied by changes in intracortical inhibition or facilitation (P > 0.12). These experiments reveal a novel high-intensity, low-frequency rTMS protocol for enhancing corticospinal excitability.NEW & NOTEWORTHY In this study, we present a novel, intensity-dependent repetitive transcranial magnetic stimulation (rTMS) protocol that induces lasting, plastic changes within the corticospinal tract. High-intensity rTMS at a frequency of 0.1 Hz induces facilitation of motor evoked potentials (MEPs) lasting at least 35 min. Additionally, these changes are not limited only to small MEPs but occur throughout the recruitment curve. Finally, facilitation of MEPs following high-intensity rTMS does not appear to be due to changes in intracortical inhibition or facilitation.


Asunto(s)
Potenciales Evocados Motores/fisiología , Corteza Motora/fisiología , Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Plasticidad Neuronal/fisiología , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal , Adulto , Estimulación Eléctrica , Femenino , Humanos , Masculino , Estimulación Magnética Transcraneal/métodos , Nervio Cubital/fisiología , Adulto Joven
15.
Mov Disord ; 35(1): 180-184, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31682033

RESUMEN

BACKGROUND: Preclinical studies underlined the relevance of Nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor pathway in the pathogenesis of Parkinson's disease (PD). OBJECTIVE: The objective of this study was to explore Nrf2 pathway in vivo in PD, looking for novel disease biomarkers and therapeutic targets. METHODS: The levels of Nrf2, the downstream effectors (NAD(P)H dehydrogenase [quinone] 1 (Nqo1) enzyme, glutathione metabolism enzymes Glutamate-cysteine ligase (GCL) and Glutathione Reductase (GR)), the upstream activators (redox state and mitochondrial dysfunction), and α-synuclein oligomers were assessed in the blood leukocytes of PD patients comparatively to controls. Biochemical data were correlated to clinical parameters. RESULTS: In PD, Nrf2 was highly transcribed and expressed as well as its target effectors. The mitochondrial complex I activity was reduced and the oxidized form of glutathione prevailed, disclosing the presence of pathway's activators. Also, α-synuclein oligomers levels were increased. Nrf2 transcript and oligomers levels correlated with PD duration. CONCLUSIONS: Blood leukocytes mirror pathogenic mechanisms of PD, showing the systemic activation of the Nrf2 pathway and its link with synucleinopathy and clinical events. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/metabolismo , Transducción de Señal/fisiología , Adulto , Anciano , Animales , Glutatión/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , alfa-Sinucleína/metabolismo
16.
Int J Mol Sci ; 20(20)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640150

RESUMEN

NRF2 (Nuclear factor Erythroid 2-related Factor 2) signaling is impaired in Friedreich's Ataxia (FRDA), an autosomal recessive disease characterized by progressive nervous system damage and degeneration of nerve fibers in the spinal cord and peripheral nerves. The loss of frataxin in patients results in iron sulfur cluster deficiency and iron accumulation in the mitochondria, making FRDA a fatal and debilitating condition. There are no currently approved therapies for the treatment of FRDA and molecules able to activate NRF2 have the potential to induce clinical benefits in patients. In this study, we compared the efficacy of six redox-active drugs, some already adopted in clinical trials, targeting NRF2 activation and frataxin expression in fibroblasts obtained from skin biopsies of FRDA patients. All of these drugs consistently increased NRF2 expression, but differential profiles of NRF2 downstream genes were activated. The Sulforaphane and N-acetylcysteine were particularly effective on genes involved in preventing inflammation and maintaining glutathione homeostasis, the dimethyl fumarate, omaxevolone, and EPI-743 in counteracting toxic products accumulation, the idebenone in mitochondrial protection. This study may contribute to develop synergic therapies, based on a combination of treatment molecules.


Asunto(s)
Acetilcisteína/farmacología , Ataxia de Friedreich/patología , Proteínas de Unión a Hierro/metabolismo , Isotiocianatos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Biopsia , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/metabolismo , Humanos , Terapia Molecular Dirigida , Oxidación-Reducción , Transducción de Señal/efectos de los fármacos , Sulfóxidos , Factores de Tiempo , Activación Transcripcional/efectos de los fármacos , Frataxina
17.
Front Cell Neurosci ; 13: 356, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417369

RESUMEN

Frataxin deficiency is the pathogenic cause of Friedreich's Ataxia, an autosomal recessive disease characterized by the increase of oxidative stress and production of free radicals in the cell. Although the onset of the pathology occurs in the second decade of life, cognitive differences and defects in brain structure and functional activation are observed in patients, suggesting developmental defects to take place during fetal neurogenesis. Here, we describe impairments in proliferation, stemness potential and differentiation in neural stem cells (NSCs) isolated from the embryonic cortex of the Frataxin Knockin/Knockout mouse, a disease animal model whose slow-evolving phenotype makes it suitable to study pre-symptomatic defects that may manifest before the clinical onset. We demonstrate that enhancing the expression and activity of the antioxidant response master regulator Nrf2 ameliorates the phenotypic defects observed in NSCs, re-establishing a proper differentiation program.

18.
J Neurophysiol ; 119(2): 652-661, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29118196

RESUMEN

Plasticity can be induced at human corticospinal-motoneuronal synapses by delivery of repeated, paired stimuli to corticospinal axons and motoneurons in a technique called paired corticospinal-motoneuronal stimulation (PCMS). To date, the mechanisms of the induced plasticity are unknown. To determine whether PCMS-induced plasticity is dependent on N-methyl-d-aspartate receptors (NMDARs), the effect of the noncompetitive NMDAR antagonist dextromethorphan on PCMS-induced facilitation was assessed in a 2-day, double-blind, placebo-controlled experiment. PCMS consisted of 100 pairs of stimuli, delivered at an interstimulus interval that produces facilitation at corticospinal-motoneuronal synapses that excite biceps brachii motoneurons. Transcranial magnetic stimulation elicited corticospinal volleys, which were timed to arrive at corticospinal-motoneuronal synapses just before antidromic potentials elicited in motoneurons with electrical brachial plexus stimulation. To measure changes in the corticospinal pathway at a spinal level, biceps responses to cervicomedullary stimulation (cervicomedullary motor evoked potentials, CMEPs) were measured before and for 30 min after PCMS. Individuals who displayed a ≥10% increase in CMEP size after PCMS on screening were eligible to take part in the 2-day experiment. After PCMS, there was a significant difference in CMEP area between placebo and dextromethorphan days ( P = 0.014). On the placebo day PCMS increased average CMEP areas to 127 ± 46% of baseline, whereas on the dextromethorphan day CMEP area was decreased to 86 ± 33% of baseline (mean ± SD; placebo: n = 11, dextromethorphan: n = 10). Therefore, dextromethorphan suppressed the facilitation of CMEPs after PCMS. This indicates that plasticity induced at synapses in the human spinal cord by PCMS may be dependent on NMDARs. NEW & NOTEWORTHY Paired corticospinal-motoneuronal stimulation can strengthen the synaptic connections between corticospinal axons and motoneurons at a spinal level in humans. The mechanism of the induced plasticity is unknown. In our 2-day, double-blind, placebo-controlled study we show that the N-methyl-d-aspartate receptor (NMDAR) antagonist dextromethorphan suppressed plasticity induced by paired corticospinal-motoneuronal stimulation, suggesting that an NMDAR-dependent mechanism is involved.


Asunto(s)
Neuronas Motoras/metabolismo , Plasticidad Neuronal , Tractos Piramidales/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Adolescente , Adulto , Potenciales Evocados Motores , Femenino , Humanos , Masculino , Neuronas Motoras/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Tractos Piramidales/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología
19.
J Neurophysiol ; 119(1): 369-376, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046429

RESUMEN

Paired corticospinal-motoneuronal stimulation (PCMS), which delivers repeated pairs of transcranial magnetic stimuli (TMS) and maximal motor nerve stimuli, can alter corticospinal transmission to low-threshold motoneurons in the human spinal cord. To determine whether similar changes occur for high-threshold motoneurons, we tested whether maximal voluntary activation and force can be affected by PCMS in healthy individuals. On 2 separate days, healthy participants ( n = 14) performed brief thumb adduction maximal voluntary contractions (MVCs) before and after a control protocol (TMS only) or PCMS designed to facilitate corticospinal transmission to adductor pollicis. Peripheral nerve stimulation alone was not performed. During each MVC, a superimposed twitch was elicited by a supramaximal stimulus delivered to the ulnar nerve. With muscles relaxed following the maximal contraction, a similar stimulus elicited a resting twitch. Voluntary activation was calculated as (1 - superimposed twitch/resting twitch) × 100%. Although voluntary activation decreased over time in both conditions, the decrease was less after PCMS (-0.4 ± 4.1%) than after the control protocol (-4.9 ± 4.9%; P = 0.007). This was supported by a greater increase in electromyographic response after PCMS than control (7 ± 13% vs. -3 ± 10%; P = 0.043). However, maximal force was not affected. The findings indicate a modest effect of PCMS on maximal neural drive to adductor pollicis, suggesting that PCMS can affect corticospinal transmission to high-threshold motoneurons. NEW & NOTEWORTHY Paired corticospinal-motoneuronal stimulation (PCMS) induces changes in the human spinal cord. To date, the reported effects of PCMS have been limited to low-threshold motoneurons and low-force tasks in healthy and spinal cord injured individuals. For the first time, we show that these plastic changes are not limited to lower threshold motoneurons, but occur across the entire motoneuron pool as demonstrated by the increases in voluntary activation and muscle activity during maximal voluntary contractions of adductor pollicis.


Asunto(s)
Contracción Isométrica , Neuronas Motoras/fisiología , Tractos Piramidales/fisiología , Adulto , Potenciales Evocados Motores , Femenino , Humanos , Masculino , Músculo Esquelético/fisiología , Pulgar/fisiología , Estimulación Magnética Transcraneal , Nervio Cubital/fisiología
20.
Int J Mol Sci ; 18(6)2017 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-28587063

RESUMEN

Lysosomal acid lipase (LAL) is a key enzyme in lipid metabolism. Initial reports have suggested a role for a relative acquired LAL deficiency in non-alcoholic fatty liver disease (NAFLD)-however, it is still unclear whether this mechanism is specific for NAFLD. We aimed to determine LAL activity in a cohort of NAFLD subjects and in a control group of hepatitis C virus (HCV)-infected patients, investigating the role of liver cirrhosis. A total of 81 patients with a diagnosis of NAFLD, and 78 matched controls with HCV-related liver disease were enrolled. For each patient, LAL activity was determined on peripheral dried blood spots (DBS) and correlated with clinical and laboratory data. A subgroup analysis among cirrhotic patients was also performed. LAL activity is significantly reduced in NAFLD, compared to that in HCV patients. This finding is particularly evident in the pre-cirrhotic stage of disease. LAL activity is also correlated with platelet and white blood cell count, suggesting an analytic interference of portal-hypertension-induced pancytopenia on DBS-determined LAL activity. NAFLD is characterized by a specific deficit in LAL activity, suggesting a pathogenetic role of LAL. We propose that future studies on this topic should rely on tissue specific analyses, as peripheral blood tests are also influenced by confounding factors.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Esterol Esterasa/metabolismo , Enfermedad de Wolman/complicaciones , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Activación Enzimática , Femenino , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/metabolismo , Hepatitis C Crónica/patología , Hepatitis C Crónica/virología , Humanos , Recuento de Leucocitos , Metabolismo de los Lípidos , Cirrosis Hepática/sangre , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/patología , Recuento de Plaquetas , Adulto Joven , Enfermedad de Wolman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...