Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 658: 124223, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38744413

RESUMEN

This study aimed to microencapsulate the probiotic strain Lactiplantibacillus plantarum 4S6R (basonym Lactobacillus plantarum) in both microcapsules and microspheres by prilling/vibration technique. A specific polymeric mixture, selected for its responsiveness to parallel colonic stimuli, was individuated as a carrier of microparticles. Although the microspheres were consistent with some critical quality parameters, they showed a low encapsulation efficiency and were discarded. The microcapsules produced demonstrated high yields (97.52%) and encapsulation efficiencies (90.06%), with dimensional analysis and SEM studies confirming the desired size morphology and structure. The results of thermal stress tests indicate the ability of the microcapsules to protect the probiotic. Stability studies showed a significant advantage of the microcapsules over non-encapsulated probiotics, with greater stability over time. The release study under simulated gastrointestinal conditions demonstrated the ability of the microcapsules to protect the probiotics from gastric acid and bile salts, ensuring their viability. Examination in a simulated faecal medium revealed the ability of the microcapsules to release the bacteria into the colon, enhancing their beneficial impact on gut health. This research suggests that the selected mixture of reactive polymers holds promise for improving the survival and efficacy of probiotics in the gastrointestinal tract, paving the way for the development of advanced probiotic products.


Asunto(s)
Cápsulas , Colon , Lactobacillus plantarum , Microesferas , Probióticos , Probióticos/administración & dosificación , Colon/microbiología , Colon/metabolismo , Ácidos y Sales Biliares/química , Composición de Medicamentos/métodos , Liberación de Fármacos , Tamaño de la Partícula , Sistemas de Liberación de Medicamentos/métodos , Ácido Gástrico/química , Ácido Gástrico/metabolismo , Estabilidad de Medicamentos , Heces/microbiología
2.
J Pharm Sci ; 113(7): 1726-1748, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38582283

RESUMEN

The production of paediatric pharmaceutical forms represents a unique challenge within the pharmaceutical industry. The primary goal of these formulations is to ensure therapeutic efficacy, safety, and tolerability in paediatric patients, who have specific physiological needs and characteristics. In recent years, there has been a significant increase in attention towards this area, driven by the need to improve drug administration to children and ensure optimal and specific treatments. Technological innovation has played a crucial role in meeting these requirements, opening new frontiers in the design and production of paediatric pharmaceutical forms. In particular, three emerging technologies have garnered considerable interest and attention within the scientific and industrial community: 3D printing, prilling/vibration, and microfluidics. These technologies offer advanced approaches for the design, production, and customization of paediatric pharmaceutical forms, allowing for more precise dosage modulation, improved solubility, and greater drug acceptability. In this review, we delve into these cutting-edge technologies and their impact on the production of paediatric pharmaceutical forms. We analyse their potential, associated challenges, and recent developments, providing a comprehensive overview of the opportunities that these innovative methodologies offer to the pharmaceutical sector. We examine different pharmaceutical forms generated using these techniques, evaluating their advantages and disadvantages.


Asunto(s)
Microfluídica , Impresión Tridimensional , Humanos , Niño , Microfluídica/métodos , Formas de Dosificación , Tecnología Farmacéutica/métodos , Pediatría/métodos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/administración & dosificación , Composición de Medicamentos/métodos , Química Farmacéutica/métodos , Solubilidad
3.
Int J Pharm ; 651: 123762, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38185338

RESUMEN

Prilling/vibration technique to produce oral microcapsules was explored to achieve local delivery of misoprostol (MIS), a prostaglandin E1 analogue indicated for the treatment of gastric-duodenal ulcers, at the gastric mucosa. To improve MIS chemical stability and reduce its associated systemic side effects, drug delivery systems were designed and developed as microcapsules consisting of a core of sunflower oil and MIS (Fs6 and Fs14) or a MIS complex with hydroxypropyl-beta-cyclodextrin (HP-ß-CD) (Fs18), confirmed by specific studies, and a polymeric shell. The produced microcapsules showed high encapsulation efficiencies for those with MIS solubilized in sunflower oil (>59.86 %) and for the microcapsules with MIS/HP-ß-CD (97.61 %). To demonstrate the ability of these systems to deliver MIS into the stomach, swelling and drug release experiments were also conducted in simulated gastric fluid. Among the three formulations, FS18 showed gastric release within 30 min and was the most advantageous formulation because the presence of the MIS/HP-ß-CD inclusion complex ensured a greater ability to stabilise MIS in the simulated gastric environment. In addition, these new systems have a small size (<540 µm), and good flow properties and the dose of the drug could be easily adapted using different amounts of microcapsules (flexibility), making them a passepartout for different age population groups.


Asunto(s)
Misoprostol , 2-Hidroxipropil-beta-Ciclodextrina , Cápsulas , Aceite de Girasol , Vibración , Sistemas de Liberación de Medicamentos , Estómago , Solubilidad
4.
Carbohydr Polym ; 302: 120422, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36604084

RESUMEN

The purpose of this study was to develop an oral paediatric formulation of budesonide (BUD) for the treatment of inflammatory bowel disease. A formulation realized as microspheres using the prilling/vibration technique is proposed as an innovative drug delivery system ensuring BUD-specific colonic release in response to different triggers, such as pH, transit time, and resident microbiota. BUD, or the inclusion complex BUD/hydroxypropyl-ß-cyclodextrin, was loaded into microspheres consisting of different ratios of alginate, Eudragit® FS 30D, with or without inulin. Sixteen formulations are produced that show high yields and encapsulation efficiencies, ensuring a homogenous distribution of BUD into the matrix. Microsphere diameters of <655 µm and promising flow properties make these systems suitable for oral administration to children. Swelling and drug release studies in simulated gastrointestinal fluid are used to demonstrate the response of microspheres to time and pH triggers. Studies in faecal medium highlight that drug release from microspheres with inulin is also influenced by microbiota.


Asunto(s)
Budesonida , Inulina , Humanos , Niño , Microesferas , Sistemas de Liberación de Medicamentos/métodos , Ácidos Polimetacrílicos/química , Colon , Concentración de Iones de Hidrógeno , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...