Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 18: 1386583, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799988

RESUMEN

Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.

2.
PLoS Comput Biol ; 20(4): e1011277, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574161

RESUMEN

According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse (pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones-more likely depression, upbound microzones-more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf-PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.


Asunto(s)
Cerebelo , Simulación por Computador , Condicionamiento Palpebral , Modelos Neurológicos , Plasticidad Neuronal , Plasticidad Neuronal/fisiología , Animales , Cerebelo/fisiología , Condicionamiento Palpebral/fisiología , Células de Purkinje/fisiología , Parpadeo/fisiología , Condicionamiento Clásico/fisiología , Sinapsis/fisiología , Biología Computacional , Ratones , Corteza Cerebelosa/fisiología
4.
Commun Biol ; 7(1): 5, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168772

RESUMEN

Purkinje cells in the cerebellum are among the largest neurons in the brain and have been extensively investigated in rodents. However, their morphological and physiological properties remain poorly understood in humans. In this study, we utilized high-resolution morphological reconstructions and unique electrophysiological recordings of human Purkinje cells ex vivo to generate computational models and estimate computational capacity. An inter-species comparison showed that human Purkinje cell had similar fractal structures but were larger than those of mouse Purkinje cells. Consequently, given a similar spine density (2/µm), human Purkinje cell hosted approximately 7.5 times more dendritic spines than those of mice. Moreover, human Purkinje cells had a higher dendritic complexity than mouse Purkinje cells and usually emitted 2-3 main dendritic trunks instead of one. Intrinsic electro-responsiveness was similar between the two species, but model simulations revealed that the dendrites could process ~6.5 times (n = 51 vs. n = 8) more input patterns in human Purkinje cells than in mouse Purkinje cells. Thus, while human Purkinje cells maintained spike discharge properties similar to those of rodents during evolution, they developed more complex dendrites, enhancing computational capacity.


Asunto(s)
Cerebelo , Células de Purkinje , Animales , Ratones , Humanos , Células de Purkinje/fisiología , Cerebelo/fisiología , Neuronas , Dendritas/fisiología
5.
Front Neurol ; 14: 1279616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965172

RESUMEN

Introduction: Within Pediatric Cerebellar Ataxias (PCAs), patients with non-progressive ataxia (NonP) surprisingly show postural motor behavior comparable to that of healthy controls, differently to slow-progressive ataxia patients (SlowP). This difference may depend on the building of compensatory strategies of the intact areas in NonP brain network. Methods: Eleven PCAs patients were recruited: five with NonP and six with SlowP. We assessed volumetric and axonal bundles alterations with a multimodal approach to investigate whether eventual spared connectivity between basal ganglia and cerebellum explains the different postural motor behavior of NonP and SlowP patients. Results: Cerebellar lobules were smaller in SlowP patients. NonP patients showed a lower number of streamlines in the cerebello-thalamo-cortical tracts but a generalized higher integrity of white matter tracts connecting the cortex and the basal ganglia with the cerebellum. Discussion: This work reveals that the axonal bundles connecting the cerebellum with basal ganglia and cortex demonstrate a higher integrity in NonP patients. This evidence highlights the importance of the cerebellum-basal ganglia connectivity to explain the different postural motor behavior of NonP and SlowP patients and support the possible compensatory role of basal ganglia in patients with stable cerebellar malformation.

6.
Sci Rep ; 13(1): 17355, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833302

RESUMEN

Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address this challenge. The aim of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer's dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal control subjects based on sociodemographic, clinical, and magnetic resonance imaging (MRI) variables. 506 subjects from 5 databases were included. MRI images were processed with FreeSurfer, LPA, and TRACULA to obtain brain volumes and thicknesses, white matter lesions and diffusion metrics. MRI metrics were used in conjunction with clinical and demographic data to perform differential diagnosis based on a Support Vector Machine model called MUQUBIA (Multimodal Quantification of Brain whIte matter biomArkers). Age, gender, Clinical Dementia Rating (CDR) Dementia Staging Instrument, and 19 imaging features formed the best set of discriminative features. The predictive model performed with an overall Area Under the Curve of 98%, high overall precision (88%), recall (88%), and F1 scores (88%) in the test group, and good Label Ranking Average Precision score (0.95) in a subset of neuropathologically assessed patients. The results of MUQUBIA were explained by the SHapley Additive exPlanations (SHAP) method. The MUQUBIA algorithm successfully classified various dementias with good performance using cost-effective clinical and MRI information, and with independent validation, has the potential to assist physicians in their clinical diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Imagen por Resonancia Magnética , Humanos , Diagnóstico Diferencial , Imagen por Resonancia Magnética/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Biomarcadores , Aprendizaje Automático , Algoritmos
7.
PLoS Comput Biol ; 19(9): e1011434, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37656758

RESUMEN

Mean-field (MF) models are computational formalism used to summarize in a few statistical parameters the salient biophysical properties of an inter-wired neuronal network. Their formalism normally incorporates different types of neurons and synapses along with their topological organization. MFs are crucial to efficiently implement the computational modules of large-scale models of brain function, maintaining the specificity of local cortical microcircuits. While MFs have been generated for the isocortex, they are still missing for other parts of the brain. Here we have designed and simulated a multi-layer MF of the cerebellar microcircuit (including Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells) and validated it against experimental data and the corresponding spiking neural network (SNN) microcircuit model. The cerebellar MF was built using a system of equations, where properties of neuronal populations and topological parameters are embedded in inter-dependent transfer functions. The model time constant was optimised using local field potentials recorded experimentally from acute mouse cerebellar slices as a template. The MF reproduced the average dynamics of different neuronal populations in response to various input patterns and predicted the modulation of the Purkinje Cells firing depending on cortical plasticity, which drives learning in associative tasks, and the level of feedforward inhibition. The cerebellar MF provides a computationally efficient tool for future investigations of the causal relationship between microscopic neuronal properties and ensemble brain activity in virtual brain models addressing both physiological and pathological conditions.


Asunto(s)
Cerebelo , Neocórtex , Animales , Ratones , Células de Purkinje , Neuronas , Biofisica
8.
Front Aging Neurosci ; 15: 1204134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577354

RESUMEN

Introduction: Neural circuit alterations lay at the core of brain physiopathology, and yet are hard to unveil in living subjects. The Virtual Brain (TVB) modeling, by exploiting structural and functional magnetic resonance imaging (MRI), yields mesoscopic parameters of connectivity and synaptic transmission. Methods: We used TVB to simulate brain networks, which are key for human brain function, in Alzheimer's disease (AD) and frontotemporal dementia (FTD) patients, whose connectivity and synaptic parameters remain largely unknown; we then compared them to healthy controls, to reveal novel in vivo pathological hallmarks. Results: The pattern of simulated parameter differed between AD and FTD, shedding light on disease-specific alterations in brain networks. Individual subjects displayed subtle differences in network parameter patterns that significantly correlated with their individual neuropsychological, clinical, and pharmacological profiles. Discussion: These TVB simulations, by informing about a new personalized set of networks parameters, open new perspectives for understanding dementias mechanisms and design personalized therapeutic approaches.

9.
Netw Neurosci ; 7(2): 844-863, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397895

RESUMEN

A characteristic feature of human cognition is our ability to 'multi-task'-performing two or more tasks in parallel-particularly when one task is well learned. How the brain supports this capacity remains poorly understood. Most past studies have focussed on identifying the areas of the brain-typically the dorsolateral prefrontal cortex-that are required to navigate information-processing bottlenecks. In contrast, we take a systems neuroscience approach to test the hypothesis that the capacity to conduct effective parallel processing relies on a distributed architecture that interconnects the cerebral cortex with the cerebellum. The latter structure contains over half of the neurons in the adult human brain and is well suited to support the fast, effective, dynamic sequences required to perform tasks relatively automatically. By delegating stereotyped within-task computations to the cerebellum, the cerebral cortex can be freed up to focus on the more challenging aspects of performing the tasks in parallel. To test this hypothesis, we analysed task-based fMRI data from 50 participants who performed a task in which they either balanced an avatar on a screen (balance), performed serial-7 subtractions (calculation) or performed both in parallel (dual task). Using a set of approaches that include dimensionality reduction, structure-function coupling, and time-varying functional connectivity, we provide robust evidence in support of our hypothesis. We conclude that distributed interactions between the cerebral cortex and cerebellum are crucially involved in parallel processing in the human brain.

10.
Front Syst Neurosci ; 17: 1185752, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234065

RESUMEN

The cerebellum operates exploiting a complex modular organization and a unified computational algorithm adapted to different behavioral contexts. Recent observations suggest that the cerebellum is involved not just in motor but also in emotional and cognitive processing. It is therefore critical to identify the specific regional connectivity and microcircuit properties of the emotional cerebellum. Recent studies are highlighting the differential regional localization of genes, molecules, and synaptic mechanisms and microcircuit wiring. However, the impact of these regional differences is not fully understood and will require experimental investigation and computational modeling. This review focuses on the cellular and circuit underpinnings of the cerebellar role in emotion. And since emotion involves an integration of cognitive, somatomotor, and autonomic activity, we elaborate on the tradeoff between segregation and distribution of these three main functions in the cerebellum.

11.
Biomedicines ; 11(5)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37239146

RESUMEN

The cerebellum is one of the most connected structures of the central nervous system and receives inputs over an extended frequency range. Nevertheless, the frequency dependence of cerebellar cortical processing remains elusive. In this work, we characterized cerebellar cortex responsiveness to mossy fibers activation at different frequencies and reconstructed the spread of activity in the sagittal and coronal planes of acute mouse cerebellar slices using a high-throughput high-density multielectrode array (HD-MEA). The enhanced spatiotemporal resolution of HD-MEA revealed the frequency dependence and spatial anisotropy of cerebellar activation. Mossy fiber inputs reached the Purkinje cell layer even at the lowest frequencies, but the efficiency of transmission increased at higher frequencies. These properties, which are likely to descend from the topographic organization of local inhibition, intrinsic electroresponsiveness, and short-term synaptic plasticity, are critical elements that have to be taken into consideration to define the computational properties of the cerebellar cortex and its pathological alterations.

13.
EClinicalMedicine ; 58: 101883, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36883140

RESUMEN

Background: Olfactory impairments and anosmia from COVID-19 infection typically resolve within 2-4 weeks, although in some cases, symptoms persist longer. COVID-19-related anosmia is associated with olfactory bulb atrophy, however, the impact on cortical structures is relatively unknown, particularly in those with long-term symptoms. Methods: In this exploratory, observational study, we studied individuals who experienced COVID-19-related anosmia, with or without recovered sense of smell, and compared against individuals with no prior COVID-19 infection (confirmed by antibody testing, all vaccine naïve). MRI Imaging was carried out between the 15th July and 17th November 2020 at the Queen Square House Clinical Scanning Facility, UCL, United Kingdom. Using functional magnetic resonance imaging (fMRI) and structural imaging, we assessed differences in functional connectivity (FC) between olfactory regions, whole brain grey matter (GM) cerebral blood flow (CBF) and GM density. Findings: Individuals with anosmia showed increased FC between the left orbitofrontal cortex (OFC), visual association cortex and cerebellum and FC reductions between the right OFC and dorsal anterior cingulate cortex compared to those with no prior COVID-19 infection (p < 0.05, from whole brain statistical parametric map analysis). Individuals with anosmia also showed greater CBF in the left insula, hippocampus and ventral posterior cingulate when compared to those with resolved anosmia (p < 0.05, from whole brain statistical parametric map analysis). Interpretation: This work describes, for the first time to our knowledge, functional differences within olfactory areas and regions involved in sensory processing and cognitive functioning. This work identifies key areas for further research and potential target sites for therapeutic strategies. Funding: This study was funded by the National Institute for Health and Care Research and supported by the Queen Square Scanner business case.

14.
Eur J Neurosci ; 57(12): 2017-2039, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36310103

RESUMEN

Neuroinformatics is a research field that focusses on software tools capable of identifying, analysing, modelling, organising and sharing multiscale neuroscience data. Neuroinformatics has exploded in the last two decades with the emergence of the Big Data phenomenon, characterised by the so-called 3Vs (volume, velocity and variety), which provided neuroscientists with an improved ability to acquire and process data faster and more cheaply thanks to technical improvements in clinical, genomic and radiological technologies. This situation has led to a 'data deluge', as neuroscientists can routinely collect more study data in a few days than they could in a year just a decade ago. To address this phenomenon, several neuroimaging-focussed neuroinformatics platforms have emerged, funded by national or transnational agencies, with the following goals: (i) development of tools for archiving and organising analytical data (XNAT, REDCap and LabKey); (ii) development of data-driven models evolving from reductionist approaches to multidimensional models (RIN, IVN, HBD, EuroPOND, E-DADS and GAAIN BRAIN); and (iii) development of e-infrastructures to provide sufficient computational power and storage resources (neuGRID, HBP-EBRAINS, LONI and CONP). Although the scenario is still fragmented, there are technological and economical attempts at both national and international levels to introduce high standards for open and Findable, Accessible, Interoperable and Reusable (FAIR) neuroscience worldwide.


Asunto(s)
Biología Computacional , Neurociencias , Biología Computacional/métodos , Neurociencias/métodos , Programas Informáticos , Encéfalo , Neuroimagen
15.
Nat Comput Sci ; 3(3): 264-276, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177882

RESUMEN

The increasing availability of quantitative data on the human brain is opening new avenues to study neural function and dysfunction, thus bringing us closer and closer to the implementation of digital twin applications for personalized medicine. Here we provide a resource to the neuroscience community: a computational method to generate full-scale scaffold model of human brain regions starting from microscopy images. We have benchmarked the method to reconstruct the CA1 region of a right human hippocampus, which accounts for about half of the entire right hippocampal formation. Together with 3D soma positioning we provide a connectivity matrix generated using a morpho-anatomical connection strategy based on axonal and dendritic probability density functions accounting for morphological properties of hippocampal neurons. The data and algorithms are supplied in a ready-to-use format, suited to implement computational models at different scales and detail.


Asunto(s)
Dendritas , Hipocampo , Humanos , Dendritas/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Axones/fisiología , Lóbulo Temporal
16.
Biomedicines ; 10(12)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36551941

RESUMEN

A central hypothesis on brain functioning is that long-term potentiation (LTP) and depression (LTD) regulate the signals transfer function by modifying the efficacy of synaptic transmission. In the cerebellum, granule cells have been shown to control the gain of signals transmitted through the mossy fiber pathway by exploiting synaptic inhibition in the glomeruli. However, the way LTP and LTD control signal transformation at the single-cell level in the space, time and frequency domains remains unclear. Here, the impact of LTP and LTD on incoming activity patterns was analyzed by combining patch-clamp recordings in acute cerebellar slices and mathematical modeling. LTP reduced the delay, increased the gain and broadened the frequency bandwidth of mossy fiber burst transmission, while LTD caused opposite changes. These properties, by exploiting NMDA subthreshold integration, emerged from microscopic changes in spike generation in individual granule cells such that LTP anticipated the emission of spikes and increased their number and precision, while LTD sorted the opposite effects. Thus, akin with the expansion recoding process theoretically attributed to the cerebellum granular layer, LTP and LTD could implement selective filtering lines channeling information toward the molecular and Purkinje cell layers for further processing.

18.
Commun Biol ; 5(1): 1240, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376444

RESUMEN

The cerebellar network is renowned for its regular architecture that has inspired foundational computational theories. However, the relationship between circuit structure, function and dynamics remains elusive. To tackle the issue, we developed an advanced computational modeling framework that allows us to reconstruct and simulate the structure and function of the mouse cerebellar cortex using morphologically realistic multi-compartmental neuron models. The cerebellar connectome is generated through appropriate connection rules, unifying a collection of scattered experimental data into a coherent construct and providing a new model-based ground-truth about circuit organization. Naturalistic background and sensory-burst stimulation are used for functional validation against recordings in vivo, monitoring the impact of cellular mechanisms on signal propagation, inhibitory control, and long-term synaptic plasticity. Our simulations show how mossy fibers entrain the local neuronal microcircuit, boosting the formation of columns of activity travelling from the granular to the molecular layer providing a new resource for the investigation of local microcircuit computation and of the neural correlates of behavior.


Asunto(s)
Corteza Cerebelosa , Modelos Neurológicos , Ratones , Animales , Corteza Cerebelosa/fisiología , Cerebelo/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología
19.
Front Comput Neurosci ; 16: 1006989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387305

RESUMEN

The neuroscientific field benefits from the conjoint evolution of experimental and computational techniques, allowing for the reconstruction and simulation of complex models of neurons and synapses. Chemical synapses are characterized by presynaptic vesicle cycling, neurotransmitter diffusion, and postsynaptic receptor activation, which eventually lead to postsynaptic currents and subsequent membrane potential changes. These mechanisms have been accurately modeled for different synapses and receptor types (AMPA, NMDA, and GABA) of the cerebellar cortical network, allowing simulation of their impact on computation. Of special relevance is short-term synaptic plasticity, which generates spatiotemporal filtering in local microcircuits and controls burst transmission and information flow through the network. Here, we present how data-driven computational models recapitulate the properties of neurotransmission at cerebellar synapses. The simulation of microcircuit models is starting to reveal how diverse synaptic mechanisms shape the spatiotemporal profiles of circuit activity and computation.

20.
PLoS Comput Biol ; 18(10): e1010564, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36194625

RESUMEN

Saccadic eye-movements play a crucial role in visuo-motor control by allowing rapid foveation onto new targets. However, the neural processes governing saccades adaptation are not fully understood. Saccades, due to the short-time of execution (20-100 ms) and the absence of sensory information for online feedback control, must be controlled in a ballistic manner. Incomplete measurements of the movement trajectory, such as the visual endpoint error, are supposedly used to form internal predictions about the movement kinematics resulting in predictive control. In order to characterize the synaptic and neural circuit mechanisms underlying predictive saccadic control, we have reconstructed the saccadic system in a digital controller embedding a spiking neural network of the cerebellum with spike timing-dependent plasticity (STDP) rules driving parallel fiber-Purkinje cell long-term potentiation and depression (LTP and LTD). This model implements a control policy based on a dual plasticity mechanism, resulting in the identification of the roles of LTP and LTD in regulating the overall quality of saccade kinematics: it turns out that LTD increases the accuracy by decreasing visual error and LTP increases the peak speed. The control policy also required cerebellar PCs to be divided into two subpopulations, characterized by burst or pause responses. To our knowledge, this is the first model that explains in mechanistic terms the visual error and peak speed regulation of ballistic eye movements in forward mode exploiting spike-timing to regulate firing in different populations of the neuronal network. This elementary model of saccades could be extended and applied to other more complex cases in which single jerks are concatenated to compose articulated and coordinated movements.


Asunto(s)
Células de Purkinje , Movimientos Sacádicos , Cerebelo/fisiología , Movimientos Oculares , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...