Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 9(30): e2203900, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36031404

RESUMEN

Pathogens ultra-sensitive detection is vital for early diagnosis and provision of restraining actions and/or treatments. Among plant pathogens, Xylella fastidiosa is among the most threatening as it can infect hundreds of plant species worldwide with consequences on agriculture and the environment. An electrolyte-gated transistor is here demonstrated to detect X. fastidiosa at a limit-of-quantification (LOQ) of 2 ± 1 bacteria in 0.1 mL (20 colony-forming-unit per mL). The assay is carried out with a millimeter-wide gate functionalized with Xylella-capturing antibodies directly in saps recovered from naturally infected plants. The proposed platform is benchmarked against the quantitave polymerase chain reaction (qPCR) gold standard, whose LOQ turns out to be at least one order of magnitude higher. Furthermore, the assay selectivity is proven against the Paraburkholderia phytofirmans bacterium (negative-control experiment). The proposed label-free, fast (30 min), and precise (false-negatives, false-positives below 1%) electronic assay, lays the ground for an ultra-high performing immunometric point-of-care platform potentially enabling large-scale screening of asymptomatic plants.


Asunto(s)
Xylella , Enfermedades de las Plantas , Plantas/microbiología , Electrónica
2.
Microorganisms ; 8(11)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233703

RESUMEN

Xylella fastidiosa subsp. pauca strain De Donno has been recently identified as the causal agent of a severe disease affecting olive trees in a wide area of the Apulia Region (Italy). While insights on the genetics and epidemiology of this virulent strain have been gained, its phenotypic and biological traits remained to be explored. We investigated in vitro behavior of the strain and compare its relevant biological features (growth rate, biofilm formation, cell-cell aggregation, and twitching motility) with those of the type strain Temecula1. The experiments clearly showed that the strain De Donno did not show fringe on the agar plates, produced larger amounts of biofilm and had a more aggregative behavior than the strain Temecula1. Repeated attempts to transform, by natural competence, the strain De Donno failed to produce a GFP-expressing and a knockout mutant for the rpfF gene. Computational prediction allowed us to identify potentially deleterious sequence variations most likely affecting the natural competence and the lack of fringe formation. GFP and rpfF- mutants were successfully obtained by co-electroporation in the presence of an inhibitor of the type I restriction-modification system. The availability of De Donno mutant strains will open for new explorations of its interactions with hosts and insect vectors.

3.
Pathogens ; 9(9)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887278

RESUMEN

The dynamics of Xylella fastidiosa infections in the context of the endophytic microbiome was studied in field-grown plants of the susceptible and resistant olive cultivars Kalamata and FS17. Whole metagenome shotgun sequencing (WMSS) coupled with 16S/ITS rRNA gene sequencing was carried out on the same trees at two different stages of the infections: In Spring 2017 when plants were almost symptomless and in Autumn 2018 when the trees of the susceptible cultivar clearly showed desiccations. The progression of the infections detected in both cultivars clearly unraveled that Xylella tends to occupy the whole ecological niche and suppresses the diversity of the endophytic microbiome. However, this trend was mitigated in the resistant cultivar FS17, harboring lower population sizes and therefore lower Xylella average abundance ratio over total bacteria, and a higher α-diversity. Host cultivar had a negligible effect on the community composition and no clear associations of a single taxon or microbial consortia with the resistance cultivar were found with both sequencing approaches, suggesting that the mechanisms of resistance likely reside on factors that are independent of the microbiome structure. Overall, Proteobacteria, Actinobacteria, Firmicutes, and Bacteriodetes dominated the bacterial microbiome while Ascomycota and Basidiomycota those of Fungi.

4.
Microorganisms ; 7(12)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817370

RESUMEN

This study investigated in-vitro the non-lethal effects of N-acetylcysteine (NAC) on Xylella fastidiosa subspecies pauca strain De Donno (Xf-DD) biofilm. This strain was isolated from the olive trees affected by the olive quick decline syndrome in southern Italy. Xf-DD was first exposed to non-lethal concentrations of NAC from 0.05 to 1000 µM. Cell surface adhesion was dramatically reduced at 500 µM NAC (-47%), hence, this concentration was selected for investigating the effects of pre-, post- and co-treatments on biofilm physiology and structural development, oxidative homeostasis, and biofilm detachment. Even though 500 µM NAC reduced bacterial attachment to surfaces, compared to the control samples, it promoted Xf-DD biofilm formation by increasing: (i) biofilm biomass by up to 78% in the co-treatment, (ii) matrix polysaccharides production by up to 72% in the pre-treatment, and (iii) reactive oxygen species levels by 3.5-fold in the co-treatment. Xf-DD biofilm detachment without and with NAC was also investigated. The NAC treatment did not increase biofilm detachment, compared to the control samples. All these findings suggested that, at 500 µM, NAC diversified the phenotypes in Xf-DD biofilm, promoting biofilm formation (hyper-biofilm-forming phenotype) and discouraging biofilm detachment (hyper-attachment phenotype), while increasing oxidative stress level in the biofilm.

5.
Pathogens ; 8(4)2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795218

RESUMEN

Olive quick decline syndrome (OQDS) is a devastating disease of olive trees in the Salento region, Italy. This disease is caused by the bacterium Xylella fastidiosa, which is widespread in the outbreak area; however, the "Leccino" variety of olives has proven to be resistant with fewer symptoms and lower bacterial populations than the "Ogliarola salentina" variety. We completed an empirical study to determine the mineral and trace element contents (viz; ionome) of leaves from infected trees comparing the two varieties, to develop hypotheses related to the resistance of Leccino trees to X. fastidiosa infection. All samples from both cultivars tested were infected by X. fastidiosa, even if leaves were asymptomatic at the time of collection, due to the high disease pressure in the outbreak area and the long incubation period of this disease. Leaves were binned for the analysis by variety, field location, and infected symptomatic and infected asymptomatic status by visual inspection. The ionome of leaf samples was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES) and compared with each other. These analyses showed that Leccino variety consistently contained higher manganese (Mn) levels compared with Ogliarola salentina, and these levels were higher in both infected asymptomatic and infected symptomatic leaves. Infected asymptomatic and infected symptomatic leaves within a host genotype also showed differences in the ionome, particularly a higher concentration of calcium (Ca) and Mn levels in the Leccino cultivar, and sodium (Na) in both varieties. We hypothesize that the ionome differences in the two varieties contribute to protection against disease caused by X. fastidiosa infection.

6.
Phytopathology ; 109(9): 1516-1518, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31329051

RESUMEN

An outbreak of Xylella fastidiosa was discovered in late 2018 in northern Italy affecting several plant species. Multilocus sequence typing analyses detected the presence of strains clustering in X. fastidiosa subsp. multiplex and harboring a hitherto uncharacterized sequence type, ST87. Three cultured strains (TOS4, TOS5, and TOS14) were subjected to high-throughput sequencing and the draft genomes assembled. Phylogenetic analysis conclusively indicated that they belong to the subspecies multiplex. The genetic information generated for these newly discovered strains further supports the evidence that sequence types are associated with the emergence of X. fastidiosa in Europe, posing major challenges for predicting the main threatened European and Mediterranean crops and plant species.


Asunto(s)
Xylella , Brotes de Enfermedades , Europa (Continente) , Italia , Filogenia , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...