Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Genet ; 55(6): 964-972, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37248441

RESUMEN

Spontaneous coronary artery dissection (SCAD) is an understudied cause of myocardial infarction primarily affecting women. It is not known to what extent SCAD is genetically distinct from other cardiovascular diseases, including atherosclerotic coronary artery disease (CAD). Here we present a genome-wide association meta-analysis (1,917 cases and 9,292 controls) identifying 16 risk loci for SCAD. Integrative functional annotations prioritized genes that are likely to be regulated in vascular smooth muscle cells and artery fibroblasts and implicated in extracellular matrix biology. One locus containing the tissue factor gene F3, which is involved in blood coagulation cascade initiation, appears to be specific for SCAD risk. Several associated variants have diametrically opposite associations with CAD, suggesting that shared biological processes contribute to both diseases, but through different mechanisms. We also infer a causal role for high blood pressure in SCAD. Our findings provide novel pathophysiological insights involving arterial integrity and tissue-mediated coagulation in SCAD and set the stage for future specific therapeutics and preventions.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Enfermedades Vasculares , Humanos , Femenino , Estudio de Asociación del Genoma Completo , Enfermedades Vasculares/genética , Enfermedad de la Arteria Coronaria/genética
2.
PLoS Genet ; 18(6): e1010261, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35714152

RESUMEN

Genome wide association studies (GWAS) have identified thousands of single nucleotide polymorphisms (SNPs) associated with the risk of common disorders. However, since the large majority of these risk SNPs reside outside gene-coding regions, GWAS generally provide no information about causal mechanisms regarding the specific gene(s) that are affected or the tissue(s) in which these candidate gene(s) exert their effect. The 'gold standard' method for understanding causal genes and their mechanisms of action are laborious basic science studies often involving sophisticated knockin or knockout mouse lines, however, these types of studies are impractical as a high-throughput means to understand the many risk variants that cause complex diseases like coronary artery disease (CAD). As a solution, we developed a streamlined, data-driven informatics pipeline to gain mechanistic insights on complex genetic loci. The pipeline begins by understanding the SNPs in a given locus in terms of their relative location and linkage disequilibrium relationships, and then identifies nearby expression quantitative trait loci (eQTLs) to determine their relative independence and the likely tissues that mediate their disease-causal effects. The pipeline then seeks to understand associations with other disease-relevant genes, disease sub-phenotypes, potential causality (Mendelian randomization), and the regulatory and functional involvement of these genes in gene regulatory co-expression networks (GRNs). Here, we applied this pipeline to understand a cluster of SNPs associated with CAD within and immediately adjacent to the gene encoding HDAC9. Our pipeline demonstrated, and validated, that this locus is causal for CAD by modulation of TWIST1 expression levels in the arterial wall, and by also governing a GRN related to metabolic function in skeletal muscle. Our results reconciled numerous prior studies, and also provided clear evidence that this locus does not govern HDAC9 expression, structure or function. This pipeline should be considered as a powerful and efficient way to understand GWAS risk loci in a manner that better reflects the highly complex nature of genetic risk associated with common disorders.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estudio de Asociación del Genoma Completo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Histona Desacetilasas/metabolismo , Desequilibrio de Ligamiento , Ratones , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Proteínas Represoras/metabolismo
4.
Circ Genom Precis Med ; 15(1): e003365, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34961328

RESUMEN

BACKGROUND: Hundreds of candidate genes have been associated with coronary artery disease (CAD) through genome-wide association studies. However, a systematic way to understand the causal mechanism(s) of these genes, and a means to prioritize them for further study, has been lacking. This represents a major roadblock for developing novel disease- and gene-specific therapies for patients with CAD. Recently, powerful integrative genomics analyses pipelines have emerged to identify and prioritize candidate causal genes by integrating tissue/cell-specific gene expression data with genome-wide association study data sets. METHODS: We aimed to develop a comprehensive integrative genomics analyses pipeline for CAD and to provide a prioritized list of causal CAD genes. To this end, we leveraged several complimentary informatics approaches to integrate summary statistics from CAD genome-wide association studies (from UK Biobank and CARDIoGRAMplusC4D) with transcriptomic and expression quantitative trait loci data from 9 cardiometabolic tissue/cell types in the STARNET study (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task). RESULTS: We identified 162 unique candidate causal CAD genes, which exerted their effect from between one and up to 7 disease-relevant tissues/cell types, including the arterial wall, blood, liver, skeletal muscle, adipose, foam cells, and macrophages. When their causal effect was ranked, the top candidate causal CAD genes were CDKN2B (associated with the 9p21.3 risk locus) and PHACTR1; both exerting their causal effect in the arterial wall. A majority of candidate causal genes were represented in cross-tissue gene regulatory co-expression networks that are involved with CAD, with 22/162 being key drivers in those networks. CONCLUSIONS: We identified and prioritized candidate causal CAD genes, also localizing their tissue(s) of causal effect. These results should serve as a resource and facilitate targeted studies to identify the functional impact of top causal CAD genes.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Aterosclerosis/genética , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Sitios de Carácter Cuantitativo
5.
Nat Commun ; 12(1): 6031, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654805

RESUMEN

Fibromuscular dysplasia (FMD) is an arteriopathy associated with hypertension, stroke and myocardial infarction, affecting mostly women. We report results from the first genome-wide association meta-analysis of six studies including 1556 FMD cases and 7100 controls. We find an estimate of SNP-based heritability compatible with FMD having a polygenic basis, and report four robustly associated loci (PHACTR1, LRP1, ATP2B1, and LIMA1). Transcriptome-wide association analysis in arteries identifies one additional locus (SLC24A3). We characterize open chromatin in arterial primary cells and find that FMD associated variants are located in arterial-specific regulatory elements. Target genes are broadly involved in mechanisms related to actin cytoskeleton and intracellular calcium homeostasis, central to vascular contraction. We find significant genetic overlap between FMD and more common cardiovascular diseases and traits including blood pressure, migraine, intracranial aneurysm, and coronary artery disease.


Asunto(s)
Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/genética , Displasia Fibromuscular/complicaciones , Displasia Fibromuscular/genética , Estudio de Asociación del Genoma Completo , Adulto , Arterias , Proteínas del Citoesqueleto/genética , Femenino , Fibroblastos , Regulación de la Expresión Génica , Humanos , Aneurisma Intracraneal , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Masculino , Proteínas de Microfilamentos/genética , Persona de Mediana Edad , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Intercambiador de Sodio-Calcio/genética , Transcriptoma
6.
J Clin Invest ; 131(15)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34338228

RESUMEN

Endothelial-mesenchymal transition (EndMT) is associated with various cardiovascular diseases and in particular with atherosclerosis and plaque instability. However, the molecular pathways that govern EndMT are poorly defined. Specifically, the role of epigenetic factors and histone deacetylases (HDACs) in controlling EndMT and the atherosclerotic plaque phenotype remains unclear. Here, we identified histone deacetylation, specifically that mediated by HDAC9 (a class IIa HDAC), as playing an important role in both EndMT and atherosclerosis. Using in vitro models, we found class IIa HDAC inhibition sustained the expression of endothelial proteins and mitigated the increase in mesenchymal proteins, effectively blocking EndMT. Similarly, ex vivo genetic knockout of Hdac9 in endothelial cells prevented EndMT and preserved a more endothelial-like phenotype. In vivo, atherosclerosis-prone mice with endothelial-specific Hdac9 knockout showed reduced EndMT and significantly reduced plaque area. Furthermore, these mice displayed a more favorable plaque phenotype, with reduced plaque lipid content and increased fibrous cap thickness. Together, these findings indicate that HDAC9 contributes to vascular pathology by promoting EndMT. Our study provides evidence for a pathological link among EndMT, HDAC9, and atherosclerosis and suggests that targeting of HDAC9 may be beneficial for plaque stabilization or slowing the progression of atherosclerotic disease.


Asunto(s)
Aterosclerosis/enzimología , Endotelio/enzimología , Histona Desacetilasas/metabolismo , Placa Aterosclerótica/enzimología , Proteínas Represoras/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Endotelio/patología , Histona Desacetilasas/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Noqueados para ApoE , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología , Proteínas Represoras/genética
7.
Cardiovasc Res ; 117(4): 1154-1165, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-32531060

RESUMEN

AIMS: Fibromuscular dysplasia (FMD) and spontaneous coronary artery dissection (SCAD) are related, non-atherosclerotic arterial diseases mainly affecting middle-aged women. Little is known about their physiopathological mechanisms. We aimed to identify rare genetic causes to elucidate molecular mechanisms implicated in FMD and SCAD. METHODS AND RESULTS: We analysed 29 exomes that included familial and sporadic FMD. We identified one rare loss-of-function variant (LoF) (frequencygnomAD = 0.000075) shared by two FMD sisters in the prostaglandin I2 receptor gene (PTGIR), a key player in vascular remodelling. Follow-up was conducted by targeted or Sanger sequencing (1071 FMD and 363 SCAD patients) or lookups in exome (264 FMD) or genome sequences (480 SCAD), all independent and unrelated. It revealed four additional LoF allele carriers, in addition to several rare missense variants, among FMD patients, and two LoF allele carriers among SCAD patients, including one carrying a rare splicing mutation (c.768 + 1C>G). We used burden test to test for enrichment in patients compared to gnomAD controls, which detected a putative enrichment in FMD (PTRAPD = 8 × 10-4), but not a significant enrichment (PTRAPD = 0.12) in SCAD. The biological effects of variants on human prostaclycin receptor (hIP) signalling and protein expression were characterized using transient overexpression in human cells. We confirmed the LoFs (Q163X and P17RfsX6) and one missense (L67P), identified in one FMD and one SCAD patient, to severely impair hIP function in vitro. CONCLUSIONS: Our study shows that rare genetic mutations in PTGIR are enriched among FMD patients and found in SCAD patients, suggesting a role for prostacyclin signalling in non-atherosclerotic stenosis and dissection.


Asunto(s)
Anomalías de los Vasos Coronarios/genética , Displasia Fibromuscular/genética , Mutación con Pérdida de Función , Mutación Missense , Receptores de Epoprostenol/genética , Enfermedades Vasculares/congénito , Adulto , Anciano , Australia , Anomalías de los Vasos Coronarios/diagnóstico , Anomalías de los Vasos Coronarios/metabolismo , Análisis Mutacional de ADN , Bases de Datos Genéticas , Europa (Continente) , Femenino , Displasia Fibromuscular/diagnóstico , Displasia Fibromuscular/metabolismo , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Valor Predictivo de las Pruebas , Receptores de Epoprostenol/metabolismo , Medición de Riesgo , Factores de Riesgo , Estados Unidos , Enfermedades Vasculares/diagnóstico , Enfermedades Vasculares/genética , Enfermedades Vasculares/metabolismo
8.
Cell Rep ; 30(2): 555-570.e7, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31940496

RESUMEN

PDGFRα+ mesenchymal progenitor cells are associated with pathological fibro-adipogenic processes. Conversely, a beneficial role for these cells during homeostasis or in response to revascularization and regeneration stimuli is suggested, but remains to be defined. We studied the molecular profile and function of PDGFRα+ cells in order to understand the mechanisms underlying their role in fibrosis versus regeneration. We show that PDGFRα+ cells are essential for tissue revascularization and restructuring through injury-stimulated remodeling of stromal and vascular components, context-dependent clonal expansion, and ultimate removal of pro-fibrotic PDGFRα+-derived cells. Tissue ischemia modulates the PDGFRα+ phenotype toward cells capable of remodeling the extracellular matrix and inducing cell-cell and cell-matrix adhesion, likely favoring tissue repair. Conversely, pathological healing occurs if PDGFRα+-derived cells persist as terminally differentiated mesenchymal cells. These studies support a context-dependent "yin-yang" biology of tissue-resident mesenchymal progenitor cells, which possess an innate ability to limit injury expansion while also promoting fibrosis in an unfavorable environment.


Asunto(s)
Fibrosis/metabolismo , Células Madre Mesenquimatosas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , Fibrosis/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Ratones Desnudos , Ratones Transgénicos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo
9.
Cardiovasc Res ; 116(1): 63-77, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31424497

RESUMEN

AIMS: Fibromuscular dysplasia (FMD) is a poorly understood disease that predominantly affects women during middle-life, with features that include stenosis, aneurysm, and dissection of medium-large arteries. Recently, plasma proteomics has emerged as an important means to understand cardiovascular diseases. Our objectives were: (i) to characterize plasma proteins and determine if any exhibit differential abundance in FMD subjects vs. matched healthy controls and (ii) to leverage these protein data to conduct systems analyses to provide biologic insights on FMD, and explore if this could be developed into a blood-based FMD test. METHODS AND RESULTS: Females with 'multifocal' FMD and matched healthy controls underwent clinical phenotyping, dermal biopsy, and blood draw. Using dual-capture proximity extension assay and nuclear magnetic resonance-spectroscopy, we evaluated plasma levels of 981 proteins and 31 lipid sub-classes, respectively. In a discovery cohort (Ncases = 90, Ncontrols = 100), we identified 105 proteins and 16 lipid sub-classes (predominantly triglycerides and fatty acids) with differential plasma abundance in FMD cases vs. controls. In an independent cohort (Ncases = 23, Ncontrols = 28), we successfully validated 37 plasma proteins and 10 lipid sub-classes with differential abundance. Among these, 5/37 proteins exhibited genetic control and Bayesian analyses identified 3 of these as potential upstream drivers of FMD. In a 3rd cohort (Ncases = 506, Ncontrols = 876) the genetic locus of one of these upstream disease drivers, CD2-associated protein (CD2AP), was independently validated as being associated with risk of having FMD (odds ratios = 1.36; P = 0.0003). Immune-fluorescence staining identified that CD2AP is expressed by the endothelium of medium-large arteries. Finally, machine learning trained on the discovery cohort was used to develop a test for FMD. When independently applied to the validation cohort, the test showed a c-statistic of 0.73 and sensitivity of 78.3%. CONCLUSION: FMD exhibits a plasma proteogenomic and lipid signature that includes potential causative disease drivers, and which holds promise for developing a blood-based test for this disease.


Asunto(s)
Proteínas Sanguíneas/genética , Displasia Fibromuscular/sangre , Displasia Fibromuscular/genética , Proteogenómica , Proteínas Adaptadoras Transductoras de Señales/sangre , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Anciano , Estudios de Casos y Controles , Proteínas del Citoesqueleto/sangre , Proteínas del Citoesqueleto/genética , Femenino , Displasia Fibromuscular/diagnóstico , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Ensayos Analíticos de Alto Rendimiento , Humanos , Lípidos/sangre , Aprendizaje Automático , Persona de Mediana Edad , Fenotipo , Valor Predictivo de las Pruebas , Prueba de Estudio Conceptual , Reproducibilidad de los Resultados , Biología de Sistemas , Adulto Joven
10.
J Am Coll Cardiol ; 73(1): 58-66, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30621952

RESUMEN

BACKGROUND: Spontaneous coronary artery dissection (SCAD) is an increasingly recognized cause of acute coronary syndromes (ACS) afflicting predominantly younger to middle-aged women. Observational studies have reported a high prevalence of extracoronary vascular anomalies, especially fibromuscular dysplasia (FMD) and a low prevalence of coincidental cases of atherosclerosis. PHACTR1/EDN1 is a genetic risk locus for several vascular diseases, including FMD and coronary artery disease, with the putative causal noncoding variant at the rs9349379 locus acting as a potential enhancer for the endothelin-1 (EDN1) gene. OBJECTIVES: This study sought to test the association between the rs9349379 genotype and SCAD. METHODS: Results from case control studies from France, United Kingdom, United States, and Australia were analyzed to test the association with SCAD risk, including age at first event, pregnancy-associated SCAD (P-SCAD), and recurrent SCAD. RESULTS: The previously reported risk allele for FMD (rs9349379-A) was associated with a higher risk of SCAD in all studies. In a meta-analysis of 1,055 SCAD patients and 7,190 controls, the odds ratio (OR) was 1.67 (95% confidence interval [CI]: 1.50 to 1.86) per copy of rs9349379-A. In a subset of 491 SCAD patients, the OR estimate was found to be higher for the association with SCAD in patients without FMD (OR: 1.89; 95% CI: 1.53 to 2.33) than in SCAD cases with FMD (OR: 1.60; 95% CI: 1.28 to 1.99). There was no effect of genotype on age at first event, P-SCAD, or recurrence. CONCLUSIONS: The first genetic risk factor for SCAD was identified in the largest study conducted to date for this condition. This genetic link may contribute to the clinical overlap between SCAD and FMD.


Asunto(s)
Anomalías de los Vasos Coronarios/epidemiología , Anomalías de los Vasos Coronarios/genética , Endotelina-1/genética , Displasia Fibromuscular/complicaciones , Sitios Genéticos/genética , Proteínas de Microfilamentos/genética , Enfermedades Vasculares/congénito , Adulto , Anciano , Australia , Estudios de Casos y Controles , Anomalías de los Vasos Coronarios/complicaciones , Femenino , Displasia Fibromuscular/genética , Francia , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Reino Unido , Estados Unidos , Enfermedades Vasculares/complicaciones , Enfermedades Vasculares/epidemiología , Enfermedades Vasculares/genética
11.
Stem Cell Reports ; 11(1): 242-257, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-30008326

RESUMEN

Mesenchymal stem cells (MSCs) reportedly exist in a vascular niche occupying the outer adventitial layer. However, these cells have not been well characterized in vivo in medium- and large-sized arteries in humans, and their potential pathological role is unknown. To address this, healthy and diseased arterial tissues were obtained as surplus surgical specimens and freshly processed. We identified that CD90 marks a rare adventitial population that co-expresses MSC markers including PDGFRα, CD44, CD73, and CD105. However, unlike CD90, these additional markers were widely expressed by other cells. Human adventitial CD90+ cells fulfilled standard MSC criteria, including plastic adherence, spindle morphology, passage ability, colony formation, and differentiation into adipocytes, osteoblasts, and chondrocytes. Phenotypic and transcriptomic profiling, as well as adoptive transfer experiments, revealed a potential role in vascular disease pathogenesis, with the transcriptomic disease signature of these cells being represented in an aortic regulatory gene network that is operative in atherosclerosis.


Asunto(s)
Arterias/embriología , Arterias/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Antígenos Thy-1/genética , Biomarcadores , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Isquemia/etiología , Isquemia/metabolismo , Neovascularización Fisiológica/genética , Antígenos Thy-1/metabolismo
13.
PLoS Genet ; 12(10): e1006367, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27792790

RESUMEN

Fibromuscular dysplasia (FMD) is a nonatherosclerotic vascular disease leading to stenosis, dissection and aneurysm affecting mainly the renal and cerebrovascular arteries. FMD is often an underdiagnosed cause of hypertension and stroke, has higher prevalence in females (~80%) but its pathophysiology is unclear. We analyzed ~26K common variants (MAF>0.05) generated by exome-chip arrays in 249 FMD patients and 689 controls. We replicated 13 loci (P<10-4) in 402 cases and 2,537 controls and confirmed an association between FMD and a variant in the phosphatase and actin regulator 1 gene (PHACTR1). Three additional case control cohorts including 512 cases and 669 replicated this result and overall reached the genomic level of significance (OR = 1.39, P = 7.4×10-10, 1,154 cases and 3,895 controls). The top variant, rs9349379, is intronic to PHACTR1, a risk locus for coronary artery disease, migraine, and cervical artery dissection. The analyses of geometrical parameters of carotids from ~2,500 healthy volunteers indicate higher intima media thickness (P = 1.97×10-4) and wall to lumen ratio (P = 0.002) in rs9349379-A carriers, suggesting indices of carotid hypertrophy previously described in carotids of FMD patients. Immunohistochemistry detected PHACTR1 in endothelium and smooth muscle cells of FMD and normal human carotids. The expression of PHACTR1 by genotypes in primary human fibroblasts showed higher expression in rs9349379-A carriers (N = 86, P = 0.003). Phactr1 knockdown in zebrafish resulted in dilated vessels indicating subtle impaired vascular development. We report the first susceptibility locus for FMD and provide evidence for a complex genetic pattern of inheritance and indices of shared pathophysiology between FMD and other cardiovascular and neurovascular diseases.


Asunto(s)
Displasia Fibromuscular/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas de Microfilamentos/genética , Animales , Arterias/metabolismo , Arterias/patología , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Grosor Intima-Media Carotídeo , Modelos Animales de Enfermedad , Exoma/genética , Femenino , Displasia Fibromuscular/patología , Regulación de la Expresión Génica , Genotipo , Humanos , Hipertensión/genética , Hipertensión/patología , Masculino , Proteínas de Microfilamentos/biosíntesis , Miocitos del Músculo Liso , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Pez Cebra/genética
14.
Nat Commun ; 7: 11853, 2016 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-27340017

RESUMEN

Endothelial to mesenchymal transition (EndMT) plays a major role during development, and also contributes to several adult cardiovascular diseases. Importantly, mesenchymal cells including fibroblasts are prominent in atherosclerosis, with key functions including regulation of: inflammation, matrix and collagen production, and plaque structural integrity. However, little is known about the origins of atherosclerosis-associated fibroblasts. Here we show using endothelial-specific lineage-tracking that EndMT-derived fibroblast-like cells are common in atherosclerotic lesions, with EndMT-derived cells expressing a range of fibroblast-specific markers. In vitro modelling confirms that EndMT is driven by TGF-ß signalling, oxidative stress and hypoxia; all hallmarks of atherosclerosis. 'Transitioning' cells are readily detected in human plaques co-expressing endothelial and fibroblast/mesenchymal proteins, indicative of EndMT. The extent of EndMT correlates with an unstable plaque phenotype, which appears driven by altered collagen-MMP production in EndMT-derived cells. We conclude that EndMT contributes to atherosclerotic patho-biology and is associated with complex plaques that may be related to clinical events.


Asunto(s)
Aterosclerosis/patología , Células Endoteliales/fisiología , Transición Epitelial-Mesenquimal/fisiología , Animales , Aterosclerosis/metabolismo , Biomarcadores , Linaje de la Célula , Movimiento Celular , Proliferación Celular , Humanos , Ratones , Estrés Oxidativo , Consumo de Oxígeno , Placa Aterosclerótica/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
15.
J Am Coll Cardiol ; 67(13): 1556-1568, 2016 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-27150688

RESUMEN

BACKGROUND: Cardiac fibrosis (CF) is associated with increased ventricular stiffness and diastolic dysfunction and is an independent predictor of long-term clinical outcomes of patients with heart failure (HF). We previously showed that the matricellular CCN5 protein is cardioprotective via its ability to inhibit CF and preserve cardiac contractility. OBJECTIVES: This study examined the role of CCN5 in human heart failure and tested whether CCN5 can reverse established CF in an experimental model of HF induced by pressure overload. METHODS: Human hearts were obtained from patients with end-stage heart failure. Extensive CF was induced by applying transverse aortic constriction for 8 weeks, which was followed by adeno-associated virus-mediated transfer of CCN5 to the heart. Eight weeks following gene transfer, cellular and molecular effects were examined. RESULTS: Expression of CCN5 was significantly decreased in failing hearts from patients with end-stage heart failure compared to nonfailing hearts. Trichrome staining and myofibroblast content measurements revealed that the established CF had been reversed by CCN5 gene transfer. Anti-CF effects of CCN5 were associated with inhibition of the transforming growth factor beta signaling pathway. CCN5 significantly inhibited endothelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation, which are 2 critical processes for CF progression, both in vivo and in vitro. In addition, CCN5 induced apoptosis in myofibroblasts, but not in cardiomyocytes or fibroblasts, both in vivo and in vitro. CCN5 provoked the intrinsic apoptotic pathway specifically in myofibroblasts, which may have been due the ability of CCN5 to inhibit the activity of NFκB, an antiapoptotic molecule. CONCLUSIONS: CCN5 can reverse established CF by inhibiting the generation of and enhancing apoptosis of myofibroblasts in the myocardium. CCN5 may provide a novel platform for the development of targeted anti-CF therapies.


Asunto(s)
Proteínas CCN de Señalización Intercelular/metabolismo , Miocardio/patología , Proteínas Represoras/metabolismo , Animales , Apoptosis , Proteínas CCN de Señalización Intercelular/genética , Transdiferenciación Celular , Dependovirus , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , Fibrosis , Terapia Genética , Vectores Genéticos , Insuficiencia Cardíaca/metabolismo , Humanos , Ratones Transgénicos , Miocardio/metabolismo , Miofibroblastos/patología , Proteínas Represoras/genética , Factor de Crecimiento Transformador beta/metabolismo
16.
J Am Coll Cardiol ; 64(10): 1033-46, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25190240

RESUMEN

Fibromuscular dysplasia (FMD) involving the coronary arteries is an uncommon but important condition that can present as acute coronary syndrome, left ventricular dysfunction, or potentially sudden cardiac death. Although the classic angiographic "string of beads" that may be observed in renal artery FMD does not occur in coronary arteries, potential manifestations include spontaneous coronary artery dissection, distal tapering or long, smooth narrowing that may represent dissection, intramural hematoma, spasm, or tortuosity. Importantly, FMD must be identified in at least one other noncoronary arterial territory to attribute any coronary findings to FMD. Although there is limited evidence to guide treatment, many lesions heal spontaneously; thus, a conservative approach is generally preferred. The etiology is poorly understood, but there are ongoing efforts to better characterize FMD and define its genetic and molecular basis. This report reviews the clinical course of FMD involving the coronary arteries and provides guidance for diagnosis and treatment strategies.


Asunto(s)
Causas de Muerte , Estenosis Coronaria/etiología , Muerte Súbita Cardíaca/etiología , Displasia Fibromuscular/complicaciones , Infarto del Miocardio/etiología , Síndrome Coronario Agudo/etiología , Síndrome Coronario Agudo/mortalidad , Síndrome Coronario Agudo/fisiopatología , Adulto , Angiografía Coronaria/métodos , Estenosis Coronaria/diagnóstico por imagen , Estenosis Coronaria/mortalidad , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Progresión de la Enfermedad , Femenino , Displasia Fibromuscular/diagnóstico , Displasia Fibromuscular/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/mortalidad , Infarto del Miocardio/fisiopatología , Análisis de Supervivencia , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/mortalidad , Disfunción Ventricular Izquierda/fisiopatología
17.
Am J Hematol ; 89(10): 954-63, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24966026

RESUMEN

Ineffective erythropoiesis is observed in many erythroid disorders including ß-thalassemia and anemia of chronic disease in which increased production of erythroblasts that fail to mature exacerbate the underlying anemias. As loss of the transcription factor FOXO3 results in erythroblast abnormalities similar to the ones observed in ineffective erythropoiesis, we investigated the underlying mechanisms of the defective Foxo3(-/-) erythroblast cell cycle and maturation. Here we show that loss of Foxo3 results in overactivation of the JAK2/AKT/mTOR signaling pathway in primary bone marrow erythroblasts partly mediated by redox modulation. We further show that hyperactivation of mTOR signaling interferes with cell cycle progression in Foxo3 mutant erythroblasts. Importantly, inhibition of mTOR signaling, in vivo or in vitro enhances significantly Foxo3 mutant erythroid cell maturation. Similarly, in vivo inhibition of mTOR remarkably improves erythroid cell maturation and anemia in a model of ß-thalassemia. Finally we show that FOXO3 and mTOR are likely part of a larger metabolic network in erythroblasts as together they control the expression of an array of metabolic genes some of which are implicated in erythroid disorders. These combined findings indicate that a metabolism-mediated regulatory network centered by FOXO3 and mTOR control the balanced production and maturation of erythroid cells. They also highlight physiological interactions between these proteins in regulating erythroblast energy. Our results indicate that alteration in the function of this network might be implicated in the pathogenesis of ineffective erythropoiesis.


Asunto(s)
Eritroblastos/metabolismo , Eritropoyesis , Factores de Transcripción Forkhead/metabolismo , Homeostasis , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Modelos Animales de Enfermedad , Eritroblastos/patología , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Ratones , Ratones Noqueados , Serina-Treonina Quinasas TOR/genética , Talasemia beta/genética , Talasemia beta/metabolismo , Talasemia beta/patología
18.
Nat Med ; 14(6): 676-80, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18469826

RESUMEN

An ideal vaccination strategy against tumors relies on specific antigens that are required for tumor maintenance. For lymphoma, vaccination with subject-specific immunoglobulin idiotypes has had the most promising results. Here we show that DNA vaccination with plasmids encoding portions of the cytoplasmic domain of anaplastic lymphoma kinase (ALK), which has been translocated in different fusion proteins necessary for the growth of anaplastic large cell lymphoma (ALCL), protects mice from local and systemic lymphoma growth. The protection is potent and long lasting and elicits ALK-specific interferon-gamma responses and CD8+ T cell-mediated cytotoxicity. A combination of chemotherapy and vaccination significantly enhanced the survival of mice challenged with ALK+ lymphomas. These findings indicate that ALK represents an ideal tumor antigen for vaccination-based therapies of ALCL and possibly other ALK+ human tumors.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfoma Anaplásico de Células Grandes/inmunología , Linfoma Anaplásico de Células Grandes/terapia , Proteínas Tirosina Quinasas/inmunología , Vacunación , Quinasa de Linfoma Anaplásico , Animales , Antígenos de Neoplasias/uso terapéutico , Línea Celular Transformada , Línea Celular Tumoral , Transformación Celular Neoplásica , Fluoresceína-5-Isotiocianato/metabolismo , Técnica del Anticuerpo Fluorescente Directa , Colorantes Fluorescentes/metabolismo , Inmunización Secundaria , Inmunohistoquímica , Linfoma Anaplásico de Células Grandes/patología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Mutación , Plásmidos , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas Receptoras
19.
Blood ; 107(2): 689-97, 2006 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-16189272

RESUMEN

Anaplastic large-cell lymphomas (ALCLs) carry chromosome translocations in which the anaplastic lymphoma kinase (ALK) gene is fused to several partners, most frequently, the NPM1 gene. We have demonstrated that the constitutive activation of ALK fusion proteins results in cellular transformation and lymphoid neoplasia. Herein, we specifically down-regulated ALK protein expression by using small hairpin RNA (shRNA) targeting a sequence coding for the catalytic domain of ALK. The ablation of ALK leads to the down-modulation of known ALK downstream effectors, cell growth arrest, and reversion of the transformed phenotype of ALK(+) mouse embryonic fibroblasts in vitro and in vivo. In human ALCL cells lentiviral-mediated ALK knock-down leads to G(1) cell-cycle arrest and apoptosis in vitro and tumor growth inhibition and regression in vivo. Using a specific approach we have demonstrated that the survival and growth of ALK(+) ALCLs are strictly dependent on ALK activation and signaling. Therefore, ALK is a viable target for therapeutic intervention and its inactivation might represent a pivotal approach for the treatment of ALK lymphomas and other ALK-dependent human tumors.


Asunto(s)
Apoptosis , Linfoma Anaplásico de Células Grandes/enzimología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Interferencia de ARN , ARN Interferente Pequeño/genética , Quinasa de Linfoma Anaplásico , Animales , Ciclo Celular , Proliferación Celular , Transformación Celular Neoplásica , Fibroblastos , Técnica del Anticuerpo Fluorescente , Humanos , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patología , Ratones , Ratones Desnudos , Nucleofosmina , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras , Retroviridae/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...