Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 20(2): 142-150, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37460675

RESUMEN

G-protein-coupled receptors (GPCRs) mediate many critical physiological processes. Their spatial organization in plasma membrane (PM) domains is believed to encode signaling specificity and efficiency. However, the existence of domains and, crucially, the mechanism of formation of such putative domains remain elusive. Here, live-cell imaging (corrected for topography-induced imaging artifacts) conclusively established the existence of PM domains for GPCRs. Paradoxically, energetic coupling to extremely shallow PM curvature (<1 µm-1) emerged as the dominant, necessary and sufficient molecular mechanism of GPCR spatiotemporal organization. Experiments with different GPCRs, H-Ras, Piezo1 and epidermal growth factor receptor, suggest that the mechanism is general, yet protein specific, and can be regulated by ligands. These findings delineate a new spatiomechanical molecular mechanism that can transduce to domain-based signaling any mechanical or chemical stimulus that affects the morphology of the PM and suggest innovative therapeutic strategies targeting cellular shape.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
Dev Cell ; 58(23): 2641-2651.e6, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37890489

RESUMEN

Choroid plexuses (ChPs) produce cerebrospinal fluid and sense non-cell-autonomous stimuli to control the homeostasis of the central nervous system. They are mainly composed of epithelial multiciliated cells, whose development and function are still controversial. We have thus characterized the stepwise order of mammalian ChP epithelia cilia formation using a combination of super-resolution-microscopy approaches and mouse genetics. We show that ChP ciliated cells are built embryonically on a treadmill of spatiotemporally regulated events, starting with atypical centriole amplification and ending with the construction of nodal-like 9+0 cilia, characterized by both primary and motile features. ChP cilia undergo axoneme resorption at early postnatal stages through a microtubule destabilization process controlled by the microtubule-severing enzyme spastin and mitigated by polyglutamylation levels. Notably, this phenotype is preserved in humans, suggesting a conserved ciliary resorption mechanism in mammals.


Asunto(s)
Axonema , Cilios , Humanos , Ratones , Animales , Cilios/fisiología , Células Epiteliales/fisiología , Epitelio , Coroides , Mamíferos
3.
Cells ; 12(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36980250

RESUMEN

Neurofilaments are one of the main cytoskeletal components in neurons; they can be found in the form of oligomers at pre- and postsynapses. How their presence is regulated at the postsynapse remains largely unclear. Here we systematically quantified, by immunolabeling, the occurrence of the neurofilament isoform triplet neurofilament light (NFL), medium (NFM), and heavy (NFH) at the postsynapse using STED nanoscopy together with markers of synaptic strength and activity. Our data show that, within dendritic spines, neurofilament isoforms rarely colocalize with each other and that they are present to different extents, with NFL being the most abundant isoform. The amount of the three isoforms correlates with markers of postsynaptic strength and presynaptic activity to varying degrees: NFL shows the highest correlation to both synaptic traits, suggesting its involvement in synaptic response, while NFM exhibits the lowest correlations. By quantifying the presence of neurofilaments at the postsynapse within the context of the synaptic status, this work sheds new light on the regulation of synaptic neurofilaments and their possible contribution to synaptopathies.


Asunto(s)
Filamentos Intermedios , Proteínas de Neurofilamentos , Espinas Dendríticas , Neuronas , Sinapsis
4.
J Clin Invest ; 133(7)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36719741

RESUMEN

Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease of the CNS. Increasing evidence suggests that vulnerable neurons in MS exhibit fatal metabolic exhaustion over time, a phenomenon hypothesized to be caused by chronic hyperexcitability. Axonal Kv7 (outward-rectifying) and oligodendroglial Kir4.1 (inward-rectifying) potassium channels have important roles in regulating neuronal excitability at and around the nodes of Ranvier. Here, we studied the spatial and functional relationship between neuronal Kv7 and oligodendroglial Kir4.1 channels and assessed the transcriptional and functional signatures of cortical and retinal projection neurons under physiological and inflammatory demyelinating conditions. We found that both channels became dysregulated in MS and experimental autoimmune encephalomyelitis (EAE), with Kir4.1 channels being chronically downregulated and Kv7 channel subunits being transiently upregulated during inflammatory demyelination. Further, we observed that pharmacological Kv7 channel opening with retigabine reduced neuronal hyperexcitability in human and EAE neurons, improved clinical EAE signs, and rescued neuronal pathology in oligodendrocyte-Kir4.1-deficient (OL-Kir4.1-deficient) mice. In summary, our findings indicate that neuron-OL compensatory interactions promoted resilience through Kv7 and Kir4.1 channels and identify pharmacological activation of nodal Kv7 channels as a neuroprotective strategy against inflammatory demyelination.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Humanos , Nódulos de Ranvier/metabolismo , Potasio/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo
5.
J Am Chem Soc ; 145(5): 3075-3083, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36716211

RESUMEN

The specific and covalent labeling of the protein HaloTag with fluorescent probes in living cells makes it a powerful tool for bioimaging. However, the irreversible attachment of the probe to HaloTag precludes imaging applications that require transient binding of the probe and comes with the risk of irreversible photobleaching. Here, we introduce exchangeable ligands for fluorescence labeling of HaloTag (xHTLs) that reversibly bind to HaloTag and that can be coupled to rhodamines of different colors. In stimulated emission depletion (STED) microscopy, probe exchange of xHTLs allows imaging with reduced photobleaching as compared to covalent HaloTag labeling. Transient binding of fluorogenic xHTLs to HaloTag fusion proteins enables points accumulation for imaging in nanoscale topography (PAINT) and MINFLUX microscopy. We furthermore introduce pairs of xHTLs and HaloTag mutants for dual-color PAINT and STED microscopy. xHTLs thus open up new possibilities in imaging across microscopy platforms for a widely used labeling approach.


Asunto(s)
Colorantes Fluorescentes , Ligandos , Microscopía Fluorescente/métodos , Colorantes Fluorescentes/metabolismo , Rodaminas
6.
Nat Chem ; 14(9): 1013-1020, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35864152

RESUMEN

The controlled switching of fluorophores between non-fluorescent and fluorescent states is central to every super-resolution fluorescence microscopy (nanoscopy) technique, and the exploration of radically new switching mechanisms remains critical to boosting the performance of established, as well as emerging super-resolution methods. Photoactivatable dyes offer substantial improvements to many of these techniques, but often rely on photolabile protecting groups that limit their applications. Here we describe a general method to transform 3,6-diaminoxanthones into caging-group-free photoactivatable fluorophores. These photoactivatable xanthones (PaX) assemble rapidly and cleanly into highly fluorescent, photo- and chemically stable pyronine dyes upon irradiation with light. The strategy is extendable to carbon- and silicon-bridged xanthone analogues, yielding a family of photoactivatable labels spanning much of the visible spectrum. Our results demonstrate the versatility and utility of PaX dyes in fixed and live-cell labelling for conventional microscopy, as well as the coordinate-stochastic and deterministic nanoscopies STED, PALM and MINFLUX.


Asunto(s)
Colorantes Fluorescentes , Silicio , Ionóforos , Microscopía Fluorescente
7.
Nat Methods ; 19(5): 603-612, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35577958

RESUMEN

Coherent fluorescence imaging with two objective lenses (4Pi detection) enables single-molecule localization microscopy with sub-10 nm spatial resolution in three dimensions. Despite its outstanding sensitivity, wider application of this technique has been hindered by complex instrumentation and the challenging nature of the data analysis. Here we report the development of a 4Pi-STORM microscope, which obtains optimal resolution and accuracy by modeling the 4Pi point spread function (PSF) dynamically while also using a simpler optical design. Dynamic spline PSF models incorporate fluctuations in the modulation phase of the experimentally determined PSF, capturing the temporal evolution of the optical system. Our method reaches the theoretical limits for precision and minimizes phase-wrapping artifacts by making full use of the information content of the data. 4Pi-STORM achieves a near-isotropic three-dimensional localization precision of 2-3 nm, and we demonstrate its capabilities by investigating protein and nucleic acid organization in primary neurons and mammalian mitochondria.


Asunto(s)
Lentes , Imagen Individual de Molécula , Animales , Artefactos , Mamíferos , Microscopía , Imagen Óptica
8.
Nat Commun ; 13(1): 2264, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477933

RESUMEN

The quality and application of super-resolution fluorescence imaging greatly lie in the dyes' properties, including photostability, brightness, and Stokes shift. Here we report a synergistic strategy to simultaneously improve such properties of regular fluorophores. Introduction of quinoxaline motif with fine-tuned electron density to conventional rhodamines generates new dyes with vibration structure and inhibited twisted-intramolecular-charge-transfer (TICT) formation synchronously, thus increasing the brightness and photostability while enlarging Stokes shift. The new fluorophore YL578 exhibits around twofold greater brightness and Stokes shift than its parental fluorophore, Rhodamine B. Importantly, in Stimulated Emission Depletion (STED) microscopy, YL578 derived probe possesses a superior photostability and thus renders threefold more frames than carbopyronine based probes (CPY-Halo and 580CP-Halo), known as photostable fluorophores for STED imaging. Furthermore, the strategy is well generalized to offer a new class of bright and photostable fluorescent probes with long Stokes shift (up to 136 nm) for bioimaging and biosensing.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Colorantes Fluorescentes/química , Ionóforos , Microscopía Fluorescente/métodos
9.
Nano Lett ; 22(3): 1145-1150, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35089720

RESUMEN

Molecular motors are pivotal for intracellular transport as well as cell motility and have great potential to be put to use outside cells. Here, we exploit engineered motor proteins in combination with self-assembly of actin filaments to actively pull lipid nanotubes from giant unilamellar vesicles (GUVs). In particular, actin filaments are bound to the outer GUV membrane and the GUVs are seeded on a heavy meromyosin-coated substrate. Upon addition of ATP, hollow lipid nanotubes with a length of tens of micrometer are pulled from single GUVs due to the motor activity. We employ the same mechanism to pull lipid nanotubes from different types of cells. We find that the length and number of nanotubes critically depends on the cell type, whereby suspension cells form bigger networks than adherent cells. This suggests that molecular machines can be used to exert forces on living cells to probe membrane-to-cortex attachment.


Asunto(s)
Actomiosina , Nanotubos , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Lípidos/química , Nanotubos/química , Liposomas Unilamelares/química
10.
J Am Chem Soc ; 143(44): 18388-18393, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714070

RESUMEN

We propose a series of fluorescent dyes with hydrophilic carbamate caging groups that undergo rapid photoactivation under UV (≤400 nm) irradiation but do not undergo spurious two-photon activation with high-intensity (visible or infrared) light of about twice the wavelength. The caged fluorescent dyes and labels derived therefrom display high water solubility and convert upon photoactivation into validated super-resolution and live-cell-compatible fluorophores. In combination with popular fluorescent markers, multiple (up to six)-color images can be obtained with stimulated emission depletion nanoscopy. Moreover, individual fluorophores can be localized with precision <3 nm (standard deviation) using MINSTED and MINFLUX techniques.

11.
Adv Mater ; 33(49): e2104614, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34580934

RESUMEN

The design and preparation of synthetic binders (SBs) applicable for small biomolecule sensing in aqueous media remains very challenging. SBs designed by the lock-and-key principle can be selective for their target analyte but usually show an insufficient binding strength in water. In contrast, SBs based on symmetric macrocycles with a hydrophobic cavity can display high binding affinities but generally suffer from indiscriminate binding of many analytes. Herein, a completely new and modular receptor design strategy based on microporous hybrid materials is presented yielding zeolite-based artificial receptors (ZARs) which reversibly bind the neurotransmitters serotonin and dopamine with unprecedented affinity and selectivity even in saline biofluids. ZARs are thought to uniquely exploit both the non-classical hydrophobic effect and direct non-covalent recognition motifs, which is supported by in-depth photophysical, and calorimetric experiments combined with full atomistic modeling. ZARs are thermally and chemically robust and can be readily prepared at gram scales. Their applicability for the label-free monitoring of important enzymatic reactions, for (two-photon) fluorescence imaging, and for high-throughput diagnostics in biofluids is demonstrated. This study showcases that artificial receptor based on microporous hybrid materials can overcome standing limitations of synthetic chemosensors, paving the way towards personalized diagnostics and metabolomics.


Asunto(s)
Neurotransmisores , Agua , Colorantes , Dopamina
12.
J Am Chem Soc ; 143(36): 14592-14600, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34460256

RESUMEN

Rhodamines are the most important class of fluorophores for applications in live-cell fluorescence microscopy. This is mainly because rhodamines exist in a dynamic equilibrium between a fluorescent zwitterion and a nonfluorescent but cell-permeable spirocyclic form. Different imaging applications require different positions of this dynamic equilibrium, and an adjustment of the equilibrium poses a challenge for the design of suitable probes. We describe here how the conversion of the ortho-carboxy moiety of a given rhodamine into substituted acyl benzenesulfonamides and alkylamides permits the systematic tuning of the equilibrium of spirocyclization with unprecedented accuracy and over a large range. This allows one to transform the same rhodamine into either a highly fluorogenic and cell-permeable probe for live-cell-stimulated emission depletion (STED) microscopy or a spontaneously blinking dye for single-molecule localization microscopy (SMLM). We used this approach to generate differently colored probes optimized for different labeling systems and imaging applications.

13.
Sci Rep ; 11(1): 4012, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597561

RESUMEN

Dendritic spines change their size and shape spontaneously, but the function of this remains unclear. Here, we address this in a biophysical model of spine fluctuations, which reproduces experimentally measured spine fluctuations. For this, we characterize size- and shape fluctuations from confocal microscopy image sequences using autoregressive models and a new set of shape descriptors derived from circular statistics. Using the biophysical model, we extrapolate into longer temporal intervals and find the presence of 1/f noise. When investigating its origins, the model predicts that the actin dynamics underlying shape fluctuations self-organizes into a critical state, which creates a fine balance between static actin filaments and free monomers. In a comparison against a non-critical model, we show that this state facilitates spine enlargement, which happens after LTP induction. Thus, ongoing spine shape fluctuations might be necessary to react quickly to plasticity events.

14.
Sci Rep ; 10(1): 20576, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239744

RESUMEN

Neurons are highly asymmetric cells that span long distances and need to react promptly to local demands. Consequently, neuronal secretory pathway elements are distributed throughout neurites, specifically in post-synaptic compartments, to enable local protein synthesis and delivery. Whether and how changes in local synaptic activity correlate to post-synaptic secretory elements is still unclear. To assess this, we used STED nanoscopy and automated quantitative image analysis of post-synaptic markers of the endoplasmic reticulum, ER-Golgi intermediate compartment, trans-Golgi network, and spine apparatus. We found that the distribution of these proteins was dependent on pre-synaptic activity, measured as the amount of recycling vesicles. Moreover, their abundance correlated to both pre- and post-synaptic markers of synaptic strength. Overall, the results suggest that in small, low-activity synapses the secretory pathway components are tightly clustered in the synaptic area, presumably to enable rapid local responses, while bigger synapses utilise secretory machinery components from larger, more diffuse areas.


Asunto(s)
Neuronas/metabolismo , Vías Secretoras/fisiología , Membranas Sinápticas/metabolismo , Animales , Dendritas/metabolismo , Retículo Endoplásmico/metabolismo , Femenino , Aparato de Golgi/metabolismo , Masculino , Microscopía Confocal/métodos , Neuronas/fisiología , Cultivo Primario de Células , Ratas , Ratas Wistar , Sinapsis/metabolismo , Red trans-Golgi/metabolismo
16.
Nat Commun ; 11(1): 4514, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908139

RESUMEN

The velocity of nerve conduction is moderately enhanced by larger axonal diameters and potently sped up by myelination of axons. Myelination thus allows rapid impulse propagation with reduced axonal diameters; however, no myelin-dependent mechanism has been reported that restricts radial growth of axons. By label-free proteomics, STED-microscopy and cryo-immuno electron-microscopy we here identify CMTM6 (chemokine-like factor-like MARVEL-transmembrane domain-containing family member-6) as a myelin protein specifically localized to the Schwann cell membrane exposed to the axon. We find that disruption of Cmtm6-expression in Schwann cells causes a substantial increase of axonal diameters but does not impair myelin biogenesis, radial sorting or integrity of axons. Increased axonal diameters correlate with accelerated sensory nerve conduction and sensory responses and perturbed motor performance. These data show that Schwann cells utilize CMTM6 to restrict the radial growth of axons, which optimizes nerve function.


Asunto(s)
Axones/metabolismo , Proteínas con Dominio MARVEL/metabolismo , Proteínas de la Mielina/metabolismo , Nervios Periféricos/citología , Células de Schwann/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Axones/ultraestructura , Microscopía por Crioelectrón , Masculino , Ratones , Ratones Noqueados , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Conducción Nerviosa , Nervios Periféricos/metabolismo , Nervios Periféricos/ultraestructura , Proteómica , Células de Schwann/citología , Células de Schwann/ultraestructura , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/ultraestructura
17.
Org Biomol Chem ; 18(15): 2929-2937, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32239080

RESUMEN

The actin cytoskeleton is crucial for endocytosis, intracellular trafficking, cell shape maintenance and a wide range of other cellular functions. Recently introduced cell-permeable fluorescent actin probes, such as SiR-actin, suffer from poor membrane permeability and stain some cell populations inhomogeneously due to the active efflux by the plasma membrane pumps. We analyzed a series of new probes composed of jasplakinolide and modified rhodamine fluorophores and found that rhodamine positional isomerism has a profound effect on probe performance. The probes based on the 6'-carboxy-carbopyronine scaffold are considerably less susceptible to efflux and allow efficient staining without efflux pump inhibitors. They can be used for 2D and 3D fluorescence nanoscopy at high nanomolar concentrations without significant cytotoxicity. We show that jasplakinolide-based fluorescent probes bind not only to actin filaments, but also to G-actin, which enables imaging highly dynamic actin structures. We demonstrate an excellent performance of the new probes in multiple organisms and cell types: human cell lines, frog erythrocytes, fruit fly tissues and primary neurons.


Asunto(s)
Actinas/análisis , Depsipéptidos/química , Colorantes Fluorescentes/química , Imagen Óptica , Rodaminas/química , Células Cultivadas , Colorantes Fluorescentes/síntesis química , Células HeLa , Humanos , Estructura Molecular
18.
Front Cell Neurosci ; 14: 10, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116557

RESUMEN

The voltage-gated Kv7.2/Kv7.3 potassium channel is a critical regulator of neuronal excitability. It is strategically positioned at the axon initial segment (AIS) of neurons, where it effectively inhibits repetitive action potential firing. While the selective accumulation of Kv7.2/Kv7.3 channels at the AIS requires binding to the adaptor protein ankyrin G, it is currently unknown if additional molecular mechanisms contribute to the localization and fine-tuning of channel numbers at the AIS. Here, we utilized a chimeric approach to pinpoint regions within the Kv7.3 C-terminal tail with an impact upon AIS localization. This strategy identified two domains with opposing effects upon the AIS localization of Kv7.3 chimeras expressed in cultured hippocampal neurons. While a membrane proximal domain reduced AIS localization of Kv7.3 chimeras, helix D increased and stabilized chimera AIS localization. None of the identified domains were required for AIS localization. However, the domains modulated the relative efficiency of the localization raising the possibility that the two domains contribute to the regulation of Kv7 channel numbers and nanoscale organization at the AIS.

19.
Nat Commun ; 11(1): 467, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980626

RESUMEN

The glucagon-like peptide-1 receptor (GLP1R) is a class B G protein-coupled receptor (GPCR) involved in metabolism. Presently, its visualization is limited to genetic manipulation, antibody detection or the use of probes that stimulate receptor activation. Herein, we present LUXendin645, a far-red fluorescent GLP1R antagonistic peptide label. LUXendin645 produces intense and specific membrane labeling throughout live and fixed tissue. GLP1R signaling can additionally be evoked when the receptor is allosterically modulated in the presence of LUXendin645. Using LUXendin645 and LUXendin651, we describe islet, brain and hESC-derived ß-like cell GLP1R expression patterns, reveal higher-order GLP1R organization including membrane nanodomains, and track single receptor subpopulations. We furthermore show that the LUXendin backbone can be optimized for intravital two-photon imaging by installing a red fluorophore. Thus, our super-resolution compatible labeling probes allow visualization of endogenous GLP1R, and provide insight into class B GPCR distribution and dynamics both in vitro and in vivo.


Asunto(s)
Colorantes Fluorescentes , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Línea Celular , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Receptor del Péptido 1 Similar al Glucagón/deficiencia , Receptor del Péptido 1 Similar al Glucagón/genética , Células HEK293 , Células Madre Embrionarias Humanas/metabolismo , Humanos , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , Modelos Moleculares , Estructura Molecular , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Transducción de Señal , Distribución Tisular
20.
Chem Sci ; 11(30): 7871-7883, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34123074

RESUMEN

Employing self-labelling protein tags for the attachment of fluorescent dyes has become a routine and powerful technique in optical microscopy to visualize and track fused proteins. However, membrane permeability of the dyes and the associated background signals can interfere with the analysis of extracellular labelling sites. Here we describe a novel approach to improve extracellular labelling by functionalizing the SNAP-tag substrate benzyl guanine ("BG") with a charged sulfonate ("SBG"). This chemical manipulation can be applied to any SNAP-tag substrate, improves solubility, reduces non-specific staining and renders the bioconjugation handle impermeable while leaving its cargo untouched. We report SBG-conjugated fluorophores across the visible spectrum, which cleanly label SNAP-fused proteins in the plasma membrane of living cells. We demonstrate the utility of SBG-conjugated fluorophores to interrogate class A, B and C G protein-coupled receptors (GPCRs) using a range of imaging approaches including nanoscopic superresolution imaging, analysis of GPCR trafficking from intra- and extracellular pools, in vivo labelling in mouse brain and analysis of receptor stoichiometry using single molecule pull down.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...