Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(2): 021801, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35867467

RESUMEN

We report the first results of a search for leptophobic dark matter (DM) from the Coherent-CAPTAIN-Mills (CCM) liquid argon (LAr) detector. An engineering run with 120 photomultiplier tubes (PMTs) and 17.9×10^{20} protons on target (POT) was performed in fall 2019 to study the characteristics of the CCM detector. The operation of this 10-ton detector was strictly light based with a threshold of 50 keV and used coherent elastic scattering off argon nuclei to detect DM. Despite only 1.5 months of accumulated luminosity, contaminated LAr, and nonoptimized shielding, CCM's first engineering run has already achieved sensitivity to previously unexplored parameter space of light dark matter models with a baryonic vector portal. With an expected background of 115 005 events, we observe 115 005+16.5 events which is compatible with background expectations. For a benchmark mediator-to-DM mass ratio of m_{V_{B}}/m_{χ}=2.1, DM masses within the range 9 MeV≲m_{χ}≲50 MeV are excluded at 90% C. L. in the leptophobic model after applying the Feldman-Cousins test statistic. CCM's upgraded run with 200 PMTs, filtered LAr, improved shielding, and 10 times more POT will be able to exclude the remaining thermal relic density parameter space of this model, as well as probe new parameter space of other leptophobic DM models.

2.
Phys Rev Lett ; 125(24): 241803, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33412014

RESUMEN

We present constraints on the existence of weakly interacting massive particles (WIMPs) from an 11 kg d target exposure of the DAMIC experiment at the SNOLAB underground laboratory. The observed energy spectrum and spatial distribution of ionization events with electron-equivalent energies >200 eV_{ee} in the DAMIC CCDs are consistent with backgrounds from natural radioactivity. An excess of ionization events is observed above the analysis threshold of 50 eV_{ee}. While the origin of this low-energy excess requires further investigation, our data exclude spin-independent WIMP-nucleon scattering cross sections σ_{χ-n} as low as 3×10^{-41} cm^{2} for WIMPs with masses m_{χ} from 7 to 10 GeV c^{-2}. These results are the strongest constraints from a silicon target on the existence of WIMPs with m_{χ}<9 GeV c^{-2} and are directly relevant to any dark matter interpretation of the excess of nuclear-recoil events observed by the CDMS silicon experiment in 2013.

3.
Phys Rev Lett ; 123(18): 181802, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31763884

RESUMEN

We report direct-detection constraints on light dark matter particles interacting with electrons. The results are based on a method that exploits the extremely low levels of leakage current of the DAMIC detector at SNOLAB of 2-6×10^{-22} A cm^{-2}. We evaluate the charge distribution of pixels that collect <10e^{-} for contributions beyond the leakage current that may be attributed to dark matter interactions. Constraints are placed on so-far unexplored parameter space for dark matter masses between 0.6 and 100 MeV c^{-2}. We also present new constraints on hidden-photon dark matter with masses in the range 1.2-30 eV c^{-2}.

4.
Phys Rev Lett ; 118(14): 141803, 2017 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-28430473

RESUMEN

We present direct detection constraints on the absorption of hidden-photon dark matter with particle masses in the range 1.2-30 eV c^{-2} with the DAMIC experiment at SNOLAB. Under the assumption that the local dark matter is entirely constituted of hidden photons, the sensitivity to the kinetic mixing parameter κ is competitive with constraints from solar emission, reaching a minimum value of 2.2×10^{-14} at 17 eV c^{-2}. These results are the most stringent direct detection constraints on hidden-photon dark matter in the galactic halo with masses 3-12 eV c^{-2} and the first demonstration of direct experimental sensitivity to ionization signals <12 eV from dark matter interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...