Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Imaging ; 10(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38786569

RESUMEN

Image quality assessment of magnetic resonance imaging (MRI) data is an important factor not only for conventional diagnosis and protocol optimization but also for fairness, trustworthiness, and robustness of artificial intelligence (AI) applications, especially on large heterogeneous datasets. Information on image quality in multi-centric studies is important to complement the contribution profile from each data node along with quantity information, especially when large variability is expected, and certain acceptance criteria apply. The main goal of this work was to present a tool enabling users to assess image quality based on both subjective criteria as well as objective image quality metrics used to support the decision on image quality based on evidence. The evaluation can be performed on both conventional and dynamic MRI acquisition protocols, while the latter is also checked longitudinally across dynamic series. The assessment provides an overall image quality score and information on the types of artifacts and degrading factors as well as a number of objective metrics for automated evaluation across series (BRISQUE score, Total Variation, PSNR, SSIM, FSIM, MS-SSIM). Moreover, the user can define specific regions of interest (ROIs) to calculate the regional signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), thus individualizing the quality output to specific use cases, such as tissue-specific contrast or regional noise quantification.

2.
J Neurointerv Surg ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702182

RESUMEN

BACKGROUND: In mechanical thrombectomy (MT), extracranial vascular tortuosity is among the main determinants of procedure duration and success. Currently, no rapid and reliable method exists to identify the anatomical features precluding fast and stable access to the cervical vessels. METHODS: A retrospective sample of 513 patients were included in this study. Patients underwent first-line transfemoral MT following anterior circulation large vessel occlusion stroke. Difficult transfemoral access (DTFA) was defined as impossible common carotid catheterization or time from groin puncture to first carotid angiogram >30 min. A machine learning model based on 29 anatomical features automatically extracted from head-and-neck computed tomography angiography (CTA) was developed to predict DTFA. Three experienced raters independently assessed the likelihood of DTFA on a reduced cohort of 116 cases using a Likert scale as benchmark for the model, using preprocedural CTA as well as automatic 3D vascular segmentation separately. RESULTS: Among the study population, 11.5% of procedures (59/513) presented DTFA. Six different features from the aortic, supra-aortic, and cervical regions were included in the model. Cross-validation resulted in an area under the receiver operating characteristic (AUROC) curve of 0.76 (95% CI 0.75 to 0.76) for DTFA prediction, with high sensitivity for impossible access identification (0.90, 95% CI 0.81 to 0.94). The model outperformed human assessment in the reduced cohort [F1-score (95% CI) by experts with CTA: 0.43 (0.37 to 0.50); experts with 3D segmentation: 0.50 (0.46 to 0.54); and model: 0.70 (0.65 to 0.75)]. CONCLUSIONS: A fully automatic model for DTFA prediction was developed and validated. The presented method improved expert assessment of difficult access prediction in stroke MT. Derived information could be used to guide decisions regarding arterial access for MT.

3.
Eur J Radiol ; 175: 111457, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640824

RESUMEN

PURPOSE: This review provides an overview of the current state of artificial intelligence (AI) technology for automated detection of breast cancer in digital mammography (DM) and digital breast tomosynthesis (DBT). It aims to discuss the technology, available AI systems, and the challenges faced by AI in breast cancer screening. METHODS: The review examines the development of AI technology in breast cancer detection, focusing on deep learning (DL) techniques and their differences from traditional computer-aided detection (CAD) systems. It discusses data pre-processing, learning paradigms, and the need for independent validation approaches. RESULTS: DL-based AI systems have shown significant improvements in breast cancer detection. They have the potential to enhance screening outcomes, reduce false negatives and positives, and detect subtle abnormalities missed by human observers. However, challenges like the lack of standardised datasets, potential bias in training data, and regulatory approval hinder their widespread adoption. CONCLUSIONS: AI technology has the potential to improve breast cancer screening by increasing accuracy and reducing radiologist workload. DL-based AI systems show promise in enhancing detection performance and eliminating variability among observers. Standardised guidelines and trustworthy AI practices are necessary to ensure fairness, traceability, and robustness. Further research and validation are needed to establish clinical trust in AI. Collaboration between researchers, clinicians, and regulatory bodies is crucial to address challenges and promote AI implementation in breast cancer screening.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama , Mamografía , Neoplasias de la Mama/diagnóstico por imagen , Humanos , Femenino , Mamografía/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Detección Precoz del Cáncer/métodos
4.
Eur Radiol Exp ; 8(1): 42, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38589742

RESUMEN

BACKGROUND: Developing trustworthy artificial intelligence (AI) models for clinical applications requires access to clinical and imaging data cohorts. Reusing of publicly available datasets has the potential to fill this gap. Specifically in the domain of breast cancer, a large archive of publicly accessible medical images along with the corresponding clinical data is available at The Cancer Imaging Archive (TCIA). However, existing datasets cannot be directly used as they are heterogeneous and cannot be effectively filtered for selecting specific image types required to develop AI models. This work focuses on the development of a homogenized dataset in the domain of breast cancer including clinical and imaging data. METHODS: Five datasets were acquired from the TCIA and were harmonized. For the clinical data harmonization, a common data model was developed and a repeatable, documented "extract-transform-load" process was defined and executed for their homogenization. Further, Digital Imaging and COmmunications in Medicine (DICOM) information was extracted from magnetic resonance imaging (MRI) data and made accessible and searchable. RESULTS: The resulting harmonized dataset includes information about 2,035 subjects with breast cancer. Further, a platform named RV-Cherry-Picker enables search over both the clinical and diagnostic imaging datasets, providing unified access, facilitating the downloading of all study imaging that correspond to specific series' characteristics (e.g., dynamic contrast-enhanced series), and reducing the burden of acquiring the appropriate set of images for the respective AI model scenario. CONCLUSIONS: RV-Cherry-Picker provides access to the largest, publicly available, homogenized, imaging/clinical dataset for breast cancer to develop AI models on top. RELEVANCE STATEMENT: We present a solution for creating merged public datasets supporting AI model development, using as an example the breast cancer domain and magnetic resonance imaging images. KEY POINTS: • The proposed platform allows unified access to the largest, homogenized public imaging dataset for breast cancer. • A methodology for the semantically enriched homogenization of public clinical data is presented. • The platform is able to make a detailed selection of breast MRI data for the development of AI models.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Inteligencia Artificial , Mama
5.
Med Phys ; 51(2): 712-739, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38018710

RESUMEN

Currently, there are multiple breast dosimetry estimation methods for mammography and its variants in use throughout the world. This fact alone introduces uncertainty, since it is often impossible to distinguish which model is internally used by a specific imaging system. In addition, all current models are hampered by various limitations, in terms of overly simplified models of the breast and its composition, as well as simplistic models of the imaging system. Many of these simplifications were necessary, for the most part, due to the need to limit the computational cost of obtaining the required dose conversion coefficients decades ago, when these models were first implemented. With the advancements in computational power, and to address most of the known limitations of previous breast dosimetry methods, a new breast dosimetry method, based on new breast models, has been developed, implemented, and tested. This model, developed jointly by the American Association of Physicists in Medicine and the European Federation for Organizations of Medical Physics, is applicable to standard mammography, digital breast tomosynthesis, and their contrast-enhanced variants. In addition, it includes models of the breast in both the cranio-caudal and the medio-lateral oblique views. Special emphasis was placed on the breast and system models used being based on evidence, either by analysis of large sets of patient data or by performing measurements on imaging devices from a range of manufacturers. Due to the vast number of dose conversion coefficients resulting from the developed model, and the relative complexity of the calculations needed to apply it, a software program has been made available for download or online use, free of charge, to apply the developed breast dosimetry method. The program is available for download or it can be used directly online. A separate User's Guide is provided with the software.


Asunto(s)
Neoplasias de la Mama , Mama , Humanos , Femenino , Mama/diagnóstico por imagen , Mamografía/métodos , Radiometría/métodos , Método de Montecarlo , Neoplasias de la Mama/diagnóstico por imagen
6.
Water Sci Technol ; 88(7): 1724-1749, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37830994

RESUMEN

With the focus on limiting greenhouse gas emissions, microalgae-based technology is a promising approach for wastewater treatment, combining cost-effective operation, nutrient recovery, and assimilation of CO2. In addition, membrane technology supports process intensification and wastewater reclamation. Based on a bibliometric analysis, this paper evaluated the literature on membrane photobioreactors to highlight promising areas for future research. Specifically, efforts should be made on advancing knowledge of interactions between algae and bacteria, analysing different strategies for membrane fouling control and determining the conditions for the most cost-effective operation. The Scopus® database was used to select documents from 2000 to 2022. A set of 126 documents were found. China is the country with the highest number of publications, whereas the most productive researchers belong to the Universitat Politècnica de València (Spain). The analysis of 50 selected articles provides a summary of the main parameters investigated, that focus in increasing the biomass productivity and nutrient removal. In addition, microalgal-bacterial membrane photobioreactor seems to have the greatest commercialisation potential. S-curve fitting confirms that this technology is still in its growth stage.


Asunto(s)
Microalgas , Purificación del Agua , Fotobiorreactores , Aguas Residuales , Biomasa , Bibliometría
7.
Int J Med Inform ; 179: 105209, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37729839

RESUMEN

BACKGROUND: The human exposome encompasses all exposures that individuals encounter throughout their lifetime. It is now widely acknowledged that health outcomes are influenced not only by genetic factors but also by the interactions between these factors and various exposures. Consequently, the exposome has emerged as a significant contributor to the overall risk of developing major diseases, such as cardiovascular disease (CVD) and diabetes. Therefore, personalized early risk assessment based on exposome attributes might be a promising tool for identifying high-risk individuals and improving disease prevention. OBJECTIVE: Develop and evaluate a novel and fair machine learning (ML) model for CVD and type 2 diabetes (T2D) risk prediction based on a set of readily available exposome factors. We evaluated our model using internal and external validation groups from a multi-center cohort. To be considered fair, the model was required to demonstrate consistent performance across different sub-groups of the cohort. METHODS: From the UK Biobank, we identified 5,348 and 1,534 participants who within 13 years from the baseline visit were diagnosed with CVD and T2D, respectively. An equal number of participants who did not develop these pathologies were randomly selected as the control group. 109 readily available exposure variables from six different categories (physical measures, environmental, lifestyle, mental health events, sociodemographics, and early-life factors) from the participant's baseline visit were considered. We adopted the XGBoost ensemble model to predict individuals at risk of developing the diseases. The model's performance was compared to that of an integrative ML model which is based on a set of biological, clinical, physical, and sociodemographic variables, and, additionally for CVD, to the Framingham risk score. Moreover, we assessed the proposed model for potential bias related to sex, ethnicity, and age. Lastly, we interpreted the model's results using SHAP, a state-of-the-art explainability method. RESULTS: The proposed ML model presents a comparable performance to the integrative ML model despite using solely exposome information, achieving a ROC-AUC of 0.78±0.01 and 0.77±0.01 for CVD and T2D, respectively. Additionally, for CVD risk prediction, the exposome-based model presents an improved performance over the traditional Framingham risk score. No bias in terms of key sensitive variables was identified. CONCLUSIONS: We identified exposome factors that play an important role in identifying patients at risk of CVD and T2D, such as naps during the day, age completed full-time education, past tobacco smoking, frequency of tiredness/unenthusiasm, and current work status. Overall, this work demonstrates the potential of exposome-based machine learning as a fair CVD and T2D risk assessment tool.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Exposoma , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Factores de Riesgo , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Aprendizaje Automático
8.
Environ Sci Pollut Res Int ; 30(27): 69977-69990, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37140860

RESUMEN

Packed-bed biofilm photobioreactor combined with ultrafiltration membrane was investigated for intensifying the process for secondary wastewater effluent treatment. Cylindrical glass carriers were used as supporting material for the microalgal-bacterial biofilm, which developed from indigenous microbial consortium. Glass carriers allowed adequate growth of the biofilm with limited suspended biomass. Stable operation was achieved after a start-up period of 1000 h, where supernatant biopolymer clusters were minimized and complete nitrification was observed. After that time, biomass productivity was 54 ± 18 mg·L-1·day-1. Green microalgae Tetradesmus obliquus and several strains of heterotrophic nitrification-aerobic denitrification bacteria and fungi were identified. Combined process exhibited COD, nitrogen and phosphorus removal rates of 56 ± 5%, 12 ± 2% and 20 ± 6%, respectively. Membrane fouling was mainly caused by biofilm formation, which was not effectively mitigated by air-scouring aided backwashing.


Asunto(s)
Microalgas , Purificación del Agua , Fotobiorreactores/microbiología , Aguas Residuales , Ultrafiltración , Nitrificación , Biopelículas , Biomasa , Nitrógeno , Reactores Biológicos , Desnitrificación
9.
10.
J Med Imaging (Bellingham) ; 10(6): 061403, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36814939

RESUMEN

Purpose: Deep learning has shown great promise as the backbone of clinical decision support systems. Synthetic data generated by generative models can enhance the performance and capabilities of data-hungry deep learning models. However, there is (1) limited availability of (synthetic) datasets and (2) generative models are complex to train, which hinders their adoption in research and clinical applications. To reduce this entry barrier, we explore generative model sharing to allow more researchers to access, generate, and benefit from synthetic data. Approach: We propose medigan, a one-stop shop for pretrained generative models implemented as an open-source framework-agnostic Python library. After gathering end-user requirements, design decisions based on usability, technical feasibility, and scalability are formulated. Subsequently, we implement medigan based on modular components for generative model (i) execution, (ii) visualization, (iii) search & ranking, and (iv) contribution. We integrate pretrained models with applications across modalities such as mammography, endoscopy, x-ray, and MRI. Results: The scalability and design of the library are demonstrated by its growing number of integrated and readily-usable pretrained generative models, which include 21 models utilizing nine different generative adversarial network architectures trained on 11 different datasets. We further analyze three medigan applications, which include (a) enabling community-wide sharing of restricted data, (b) investigating generative model evaluation metrics, and (c) improving clinical downstream tasks. In (b), we extract Fréchet inception distances (FID) demonstrating FID variability based on image normalization and radiology-specific feature extractors. Conclusion: medigan allows researchers and developers to create, increase, and domain-adapt their training data in just a few lines of code. Capable of enriching and accelerating the development of clinical machine learning models, we show medigan's viability as platform for generative model sharing. Our multimodel synthetic data experiments uncover standards for assessing and reporting metrics, such as FID, in image synthesis studies.

11.
Med Image Anal ; 84: 102704, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36473414

RESUMEN

Despite technological and medical advances, the detection, interpretation, and treatment of cancer based on imaging data continue to pose significant challenges. These include inter-observer variability, class imbalance, dataset shifts, inter- and intra-tumour heterogeneity, malignancy determination, and treatment effect uncertainty. Given the recent advancements in image synthesis, Generative Adversarial Networks (GANs), and adversarial training, we assess the potential of these technologies to address a number of key challenges of cancer imaging. We categorise these challenges into (a) data scarcity and imbalance, (b) data access and privacy, (c) data annotation and segmentation, (d) cancer detection and diagnosis, and (e) tumour profiling, treatment planning and monitoring. Based on our analysis of 164 publications that apply adversarial training techniques in the context of cancer imaging, we highlight multiple underexplored solutions with research potential. We further contribute the Synthesis Study Trustworthiness Test (SynTRUST), a meta-analysis framework for assessing the validation rigour of medical image synthesis studies. SynTRUST is based on 26 concrete measures of thoroughness, reproducibility, usefulness, scalability, and tenability. Based on SynTRUST, we analyse 16 of the most promising cancer imaging challenge solutions and observe a high validation rigour in general, but also several desirable improvements. With this work, we strive to bridge the gap between the needs of the clinical cancer imaging community and the current and prospective research on data synthesis and adversarial networks in the artificial intelligence community.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Neoplasias , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Inteligencia Artificial , Reproducibilidad de los Resultados , Estudios Prospectivos , Neoplasias/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
12.
Artif Intell Med ; 132: 102386, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36207090

RESUMEN

Computer-aided detection systems based on deep learning have shown great potential in breast cancer detection. However, the lack of domain generalization of artificial neural networks is an important obstacle to their deployment in changing clinical environments. In this study, we explored the domain generalization of deep learning methods for mass detection in digital mammography and analyzed in-depth the sources of domain shift in a large-scale multi-center setting. To this end, we compared the performance of eight state-of-the-art detection methods, including Transformer based models, trained in a single domain and tested in five unseen domains. Moreover, a single-source mass detection training pipeline was designed to improve the domain generalization without requiring images from the new domain. The results show that our workflow generalized better than state-of-the-art transfer learning based approaches in four out of five domains while reducing the domain shift caused by the different acquisition protocols and scanner manufacturers. Subsequently, an extensive analysis was performed to identify the covariate shifts with the greatest effects on detection performance, such as those due to differences in patient age, breast density, mass size, and mass malignancy. Ultimately, this comprehensive study provides key insights and best practices for future research on domain generalization in deep learning based breast cancer detection.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Aprendizaje Automático , Mamografía/métodos , Redes Neurales de la Computación
13.
PLoS One ; 17(6): e0269916, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35687559

RESUMEN

BACKGROUND: Our objective was to estimate the impact of universal varicella vaccination (UVV) on the use and costs of antibiotics and antivirals for the management of varicella among children in the United States (US). METHODS: A decision tree model of varicella vaccination, infections and treatment decisions was developed. Results were extrapolated to the 2017 population of 73.5 million US children. Model parameters were populated from published sources. Treatment decisions were derived from a survey of health care professionals' recommendations. The base case modelled current vaccination coverage rates in the US with additional scenarios analyses conducted for 0%, 20%, and 80% coverage and did not account for herd immunity benefits. RESULTS: Our model estimated that 551,434 varicella cases occurred annually among children ≤ 18 years in 2017. Antivirals or antibiotics were prescribed in 23.9% of cases, with unvaccinated children receiving the majority for base case. The annual cost for varicella antiviral and antibiotic treatment was approximately $14 million ($26 per case), with cases with no complications accounting for $12 million. Compared with the no vaccination scenario, the current vaccination rates resulted in savings of $181 million (94.7%) for antivirals and $78 million (95.0%) for antibiotics annually. Scenario analyses showed that higher vaccination coverage (from 0% to 80%) resulted in reduced annual expenditures for antivirals (from $191 million to $41 million), and antibiotics ($82 million to $17 million). CONCLUSIONS: UVV was associated with significant reductions in the use of antibiotics and antivirals and their associated costs in the US. Higher vaccination coverage was associated with lower use and costs of antibiotics and antivirals for varicella management.


Asunto(s)
Varicela , Antibacterianos/uso terapéutico , Antivirales/uso terapéutico , Varicela/tratamiento farmacológico , Varicela/epidemiología , Varicela/prevención & control , Vacuna contra la Varicela/uso terapéutico , Niño , Análisis Costo-Beneficio , Herpesvirus Humano 3 , Humanos , Estados Unidos/epidemiología , Vacunación
14.
Med Phys ; 49(8): 5423-5438, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35635844

RESUMEN

BACKGROUND: Understanding the magnitude and variability of the radiation dose absorbed by the breast fibroglandular tissue during mammography and digital breast tomosynthesis (DBT) is of paramount importance to assess risks versus benefits. Although homogeneous breast models have been proposed and used for decades for this purpose, they do not accurately reflect the actual heterogeneous distribution of the fibroglandular tissue in the breast, leading to biases in the estimation of dose from these modalities. PURPOSE: To develop and validate a method to generate patient-derived, heterogeneous digital breast phantoms for breast dosimetry in mammography and DBT. METHODS: The proposed phantoms were developed starting from patient-based models of compressed breasts, generated for multiple thicknesses and representing the two standard views acquired in mammography and DBT, that is, cranio-caudal (CC) and medio-lateral-oblique (MLO). Internally, the breast phantoms were defined as consisting of an adipose/fibroglandular tissue mixture, with a nonspatially uniform relative concentration. The parenchyma distributions were obtained from a previously described model based on patient breast computed tomography data that underwent simulated compression. Following these distributions, phantoms with any glandular fraction (1%-100%) and breast thickness (12-125 mm) can be generated, for both views. The phantoms were validated, in terms of their accuracy for average normalized glandular dose (Dg N) estimation across samples of patient breasts, using 88 patient-specific phantoms involving actual patient distribution of the fibroglandular tissue in the breast, and compared to that obtained using a homogeneous model similar to those currently used for breast dosimetry. RESULTS: The average Dg N estimated for the proposed phantoms was concordant with that absorbed by the patient-specific phantoms to within 5% (CC) and 4% (MLO). These Dg N estimates were over 30% lower than those estimated with the homogeneous models, which overestimated the average Dg N by 43% (CC), and 32% (MLO) compared to the patient-specific phantoms. CONCLUSIONS: The developed phantoms can be used for dosimetry simulations to improve the accuracy of dose estimates in mammography and DBT.


Asunto(s)
Neoplasias de la Mama , Mamografía , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Mamografía/métodos , Fantasmas de Imagen , Radiometría/métodos , Tomografía Computarizada por Rayos X/métodos
15.
Front Oncol ; 12: 1044496, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36755853

RESUMEN

Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection. However, high-density breasts show poorer detection performance since dense tissues can mask or even simulate masses. Therefore, the sensitivity of mammography for breast cancer detection can be reduced by more than 20% in dense breasts. Additionally, extremely dense cases reported an increased risk of cancer compared to low-density breasts. This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms (FFDM) as data augmentation during breast mass detection model training. To this end, a total of five cycle-consistent GAN (CycleGAN) models using three FFDM datasets were trained for low-to-high-density image translation in high-resolution mammograms. The training images were split by breast density BI-RADS categories, being BI-RADS A almost entirely fatty and BI-RADS D extremely dense breasts. Our results showed that the proposed data augmentation technique improved the sensitivity and precision of mass detection in models trained with small datasets and improved the domain generalization of the models trained with large databases. In addition, the clinical realism of the synthetic images was evaluated in a reader study involving two expert radiologists and one surgical oncologist.

16.
Comput Biol Med ; 136: 104689, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34364263

RESUMEN

BACKGROUND AND OBJECTIVE: The most common tool for population-wide COVID-19 identification is the Reverse Transcription-Polymerase Chain Reaction test that detects the presence of the virus in the throat (or sputum) in swab samples. This test has a sensitivity between 59% and 71%. However, this test does not provide precise information regarding the extension of the pulmonary infection. Moreover, it has been proven that through the reading of a computed tomography (CT) scan, a clinician can provide a more complete perspective of the severity of the disease. Therefore, we propose a comprehensive system for fully-automated COVID-19 detection and lesion segmentation from CT scans, powered by deep learning strategies to support decision-making process for the diagnosis of COVID-19. METHODS: In the workflow proposed, the input CT image initially goes through lung delineation, then COVID-19 detection and finally lesion segmentation. The chosen neural network has a U-shaped architecture using a newly introduced Multiple Convolutional Layers structure, that produces a lung segmentation mask within a novel pipeline for direct COVID-19 detection and segmentation. In addition, we propose a customized loss function that guarantees an optimal balance on average between sensitivity and precision. RESULTS: Lungs' segmentation results show a sensitivity near 99% and Dice-score of 97%. No false positives were observed in the detection network after 10 different runs with an average accuracy of 97.1%. The average accuracy for lesion segmentation was approximately 99%. Using UNet as a benchmark, we compared our results with several other techniques proposed in the literature, obtaining the largest improvement over the UNet outcomes. CONCLUSIONS: The method proposed in this paper outperformed the state-of-the-art methods for COVID-19 lesion segmentation from CT images, and improved by 38.2% the results for F1-score of UNet. The high accuracy observed in this work opens up a wide range of possible applications of our algorithm in other fields related to medical image segmentation.


Asunto(s)
COVID-19 , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/diagnóstico por imagen , Redes Neurales de la Computación , SARS-CoV-2 , Tomografía Computarizada por Rayos X
17.
Med Image Anal ; 71: 102061, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33910108

RESUMEN

The two-dimensional nature of mammography makes estimation of the overall breast density challenging, and estimation of the true patient-specific radiation dose impossible. Digital breast tomosynthesis (DBT), a pseudo-3D technique, is now commonly used in breast cancer screening and diagnostics. Still, the severely limited 3rd dimension information in DBT has not been used, until now, to estimate the true breast density or the patient-specific dose. This study proposes a reconstruction algorithm for DBT based on deep learning specifically optimized for these tasks. The algorithm, which we name DBToR, is based on unrolling a proximal-dual optimization method. The proximal operators are replaced with convolutional neural networks and prior knowledge is included in the model. This extends previous work on a deep learning-based reconstruction model by providing both the primal and the dual blocks with breast thickness information, which is available in DBT. Training and testing of the model were performed using virtual patient phantoms from two different sources. Reconstruction performance, and accuracy in estimation of breast density and radiation dose, were estimated, showing high accuracy (density <±3%; dose <±20%) without bias, significantly improving on the current state-of-the-art. This work also lays the groundwork for developing a deep learning-based reconstruction algorithm for the task of image interpretation by radiologists.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Mama/diagnóstico por imagen , Densidad de la Mama , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Mamografía , Dosis de Radiación
18.
Phys Med ; 83: 25-37, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33684723

RESUMEN

The vast amount of data produced by today's medical imaging systems has led medical professionals to turn to novel technologies in order to efficiently handle their data and exploit the rich information present in them. In this context, artificial intelligence (AI) is emerging as one of the most prominent solutions, promising to revolutionise every day clinical practice and medical research. The pillar supporting the development of reliable and robust AI algorithms is the appropriate preparation of the medical images to be used by the AI-driven solutions. Here, we provide a comprehensive guide for the necessary steps to prepare medical images prior to developing or applying AI algorithms. The main steps involved in a typical medical image preparation pipeline include: (i) image acquisition at clinical sites, (ii) image de-identification to remove personal information and protect patient privacy, (iii) data curation to control for image and associated information quality, (iv) image storage, and (v) image annotation. There exists a plethora of open access tools to perform each of the aforementioned tasks and are hereby reviewed. Furthermore, we detail medical image repositories covering different organs and diseases. Such repositories are constantly increasing and enriched with the advent of big data. Lastly, we offer directions for future work in this rapidly evolving field.


Asunto(s)
Algoritmos , Inteligencia Artificial , Macrodatos , Humanos
19.
Med Phys ; 48(3): 1436-1447, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33452822

RESUMEN

PURPOSE: To develop a patient-based breast density model by characterizing the fibroglandular tissue distribution in patient breasts during compression for mammography and digital breast tomosynthesis (DBT) imaging. METHODS: In this prospective study, 88 breast images were acquired using a dedicated breast computed tomography (CT) system. The breasts in the images were classified into their three main tissue components and mechanically compressed to mimic the positioning for mammographic acquisition of the craniocaudal (CC) and mediolateral oblique (MLO) views. The resulting fibroglandular tissue distribution during these compressions was characterized by dividing the compressed breast volume into small regions, for which the median and the 25th and 75th percentile values of local fibroglandular density were obtained in the axial, coronal, and sagittal directions. The best fitting function, based on the likelihood method, for the median distribution was obtained in each direction. RESULTS: The fibroglandular tissue tends to concentrate toward the caudal (about 15% below the midline of the breast) and anterior regions of the breast, in both the CC- and MLO-view compressions. A symmetrical distribution was found in the MLO direction in the case of the CC-view compression, while a shift of about 12% toward the lateral direction was found in the MLO-view case. CONCLUSIONS: The location of the fibroglandular tissue in the breast under compression during mammography and DBT image acquisition is a major factor for determining the actual glandular dose imparted during these examinations. A more realistic model of the parenchyma in the compressed breast, based on patient image data, was developed. This improved model more accurately reflects the fibroglandular tissue spatial distribution that can be found in patient breasts, and therefore might aid in future studies involving radiation dose and/or cancer development risk estimation.


Asunto(s)
Neoplasias de la Mama , Mamografía , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Humanos , Estudios Prospectivos , Distribución Tisular , Tomografía Computarizada por Rayos X
20.
Phys Med ; 81: 141-146, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33453506

RESUMEN

PURPOSE: To assess current perceptions, practices and education needs pertaining to artificial intelligence (AI) in the medical physics field. METHODS: A web-based survey was distributed to the European Federation of Organizations for Medical Physics (EFOMP) through social media and email membership list. The survey included questions about education, personal knowledge, needs, research and professionalism around AI in medical physics. Demographics information were also collected. Responses were stratified and analysed by gender, type of institution and years of experience in medical physics. Statistical significance (p<0.05) was assessed using paired t-test. RESULTS: 219 people from 31 countries took part in the survey. 81% (n = 177) of participants agreed that AI will improve the daily work of Medical Physics Experts (MPEs) and 88% (n = 193) of respondents expressed the need for MPEs of specific training on AI. The average level of AI knowledge among participants was 2.3 ± 1.0 (mean ± standard deviation) in a 1-to-5 scale and 96% (n = 210) of participants showed interest in improving their AI skills. A significantly lower AI knowledge was observed for female participants (2.0 ± 1.0), compared to male responders (2.4 ± 1.0). 64% of participants indicated that they are not involved in AI projects. The percentage of female leading AI projects was significantly lower than the male counterparts (3% vs 19%). CONCLUSIONS: AI was perceived as a positive resource to support MPEs in their daily tasks. Participants demonstrated a strong interest in improving their current AI-related skills, enhancing the need for dedicated training for MPEs.


Asunto(s)
Inteligencia Artificial , Física , Escolaridad , Femenino , Humanos , Masculino , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...