Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0302680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753896

RESUMEN

Scalesia pendunculata Hook.f. is the dominant tree in several highlands' areas of the Galapagos Archipelago, yet in inhabited islands the conversion to agricultural fields has reduced its cover. The transition to agroforestry systems including the species shows promising scenarios to restore its cover and to provide ecosystem services such as carbon sequestration. Here, based on field gathered data, we model the potential contribution of S. pedunculata stands in the carbon sequestration of Galapagos. Between 2013-2021, 426 S. pedunculata seedlings were planted in the highlands of Santa Cruz and Floreana islands using several restoration technologies, and their height and survival were monitored every three months. A sub-sample of 276 trees alive since 2020 was used to estimate the DBH based on plant age and height. Based on scientific literature, biomass and carbon content were estimated across time. The final modelling included the density of plants in the restoration sites, estimated DBH, potential survival by restoration treatment, and a Brownian noise to add stochastic events. Overall, survival of S. pedunculata was high in control and slightly increased by most restoration treatments. A stand of 530 trees/ha was projected to sequester ~21 Mg C/ha in 10 years. If this is replicated over all Galapagos coffee production would contribute to the reduction of -1.062% of the Galapagos carbon footprint for the same period. This study adds to compiling benefits of restoring Galapagos flora.


Asunto(s)
Agricultura , Secuestro de Carbono , Agricultura/métodos , Ecuador , Ecosistema , Carbono/metabolismo , Árboles/crecimiento & desarrollo , Biomasa , Conservación de los Recursos Naturales/métodos
2.
Trends Ecol Evol ; 38(7): 631-642, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36870806

RESUMEN

A recurring feature of oceanic archipelagos is the presence of adaptive radiations that generate endemic, species-rich clades that can offer outstanding insight into the links between ecology and evolution. Recent developments in evolutionary genomics have contributed towards solving long-standing questions at this interface. Using a comprehensive literature search, we identify studies spanning 19 oceanic archipelagos and 110 putative adaptive radiations, but find that most of these radiations have not yet been investigated from an evolutionary genomics perspective. Our review reveals different gaps in knowledge related to the lack of implementation of genomic approaches, as well as undersampled taxonomic and geographic areas. Filling those gaps with the required data will help to deepen our understanding of adaptation, speciation, and other evolutionary processes.


Asunto(s)
Evolución Biológica , Especiación Genética , Filogenia , Ecología , Genómica
3.
Nat Commun ; 13(1): 3729, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764640

RESUMEN

The repeated, rapid and often pronounced patterns of evolutionary divergence observed in insular plants, or the 'plant island syndrome', include changes in leaf phenotypes, growth, as well as the acquisition of a perennial lifestyle. Here, we sequence and describe the genome of the critically endangered, Galápagos-endemic species Scalesia atractyloides Arnot., obtaining a chromosome-resolved, 3.2-Gbp assembly containing 43,093 candidate gene models. Using a combination of fossil transposable elements, k-mer spectra analyses and orthologue assignment, we identify the two ancestral genomes, and date their divergence and the polyploidization event, concluding that the ancestor of all extant Scalesia species was an allotetraploid. There are a comparable number of genes and transposable elements across the two subgenomes, and while their synteny has been mostly conserved, we find multiple inversions that may have facilitated adaptation. We identify clear signatures of selection across genes associated with vascular development, growth, adaptation to salinity and flowering time, thus finding compelling evidence for a genomic basis of the island syndrome in one of Darwin's giant daisies.


Asunto(s)
Elementos Transponibles de ADN , Genómica , Evolución Biológica , Elementos Transponibles de ADN/genética , Sintenía/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...