Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(6): e1012166, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843155

RESUMEN

Despite advances and social progress, the exclusion of diverse groups in academia, especially science, technology, engineering, and mathematics (STEM) fields, across the US and Europe persists, resulting in the underrepresentation of diverse people in higher education. There is extensive literature about theory, observation, and evidence-based practices that can help create a more equitable, inclusive, and diverse learning environment. In this article, we propose the implementation of a Diversity, Equity, Inclusion, and Justice (DEIJ) journal club as a strategic initiative to foster education and promote action towards making academia a more equitable institution. By creating a space for people to engage with DEIJ theories* and strategize ways to improve their learning environment, we hope to normalize the practice and importance of analyzing academia through an equity lens. Guided by restorative justice principles, we offer 10 recommendations for fostering community cohesion through education and mutual understanding. This approach underscores the importance of appropriate action and self-education in the journey toward a more diverse, equitable, inclusive, and just academic environment. *Authors' note: We understand that "DEIJ" is a multidisciplinary organizational framework that relies on numerous fields of study, including history, sociology, philosophy, and more. We use this term to refer to these different fields of study for brevity purposes.


Asunto(s)
Diversidad Cultural , Justicia Social , Humanos , Publicaciones Periódicas como Asunto , Ingeniería/educación , Ciencia/educación , Matemática/educación , Universidades , Diversidad, Equidad e Inclusión
2.
bioRxiv ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37398339

RESUMEN

Chitin is an abundant biopolymer and pathogen-associated molecular pattern that stimulates a host innate immune response. Mammals express chitin-binding and chitin-degrading proteins to remove chitin from the body. One of these proteins, Acidic Mammalian Chitinase (AMCase), is an enzyme known for its ability to function under acidic conditions in the stomach but is also active in tissues with more neutral pHs, such as the lung. Here, we used a combination of biochemical, structural, and computational modeling approaches to examine how the mouse homolog (mAMCase) can act in both acidic and neutral environments. We measured kinetic properties of mAMCase activity across a broad pH range, quantifying its unusual dual activity optima at pH 2 and 7. We also solved high resolution crystal structures of mAMCase in complex with oligomeric GlcNAcn, the building block of chitin, where we identified extensive conformational ligand heterogeneity. Leveraging these data, we conducted molecular dynamics simulations that suggest how a key catalytic residue could be protonated via distinct mechanisms in each of the two environmental pH ranges. These results integrate structural, biochemical, and computational approaches to deliver a more complete understanding of the catalytic mechanism governing mAMCase activity at different pH. Engineering proteins with tunable pH optima may provide new opportunities to develop improved enzyme variants, including AMCase, for therapeutic purposes in chitin degradation.

3.
Immunity ; 55(10): 1891-1908.e12, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36044899

RESUMEN

Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.


Asunto(s)
Infestaciones por Ácaros , Ácaros , Animales , Citocinas , Folículo Piloso/patología , Humanos , Inmunidad Innata , Inflamación , Interleucina-13 , Linfocitos/patología , Ratones , Infestaciones por Ácaros/complicaciones , Infestaciones por Ácaros/parasitología , Infestaciones por Ácaros/patología , Simbiosis
4.
Sci Adv ; 7(16)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33853786

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral adenosine diphosphate-ribosylation signaling. This enzyme is a promising antiviral target because catalytic mutations render viruses nonpathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of 2533 diverse fragments resulted in 214 unique macrodomain-binders. An additional 60 molecules were selected from docking more than 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several fragment hits were confirmed by solution binding using three biophysical techniques (differential scanning fluorimetry, homogeneous time-resolved fluorescence, and isothermal titration calorimetry). The 234 fragment structures explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.


Asunto(s)
Dominio Catalítico/fisiología , Unión Proteica/fisiología , Proteínas no Estructurales Virales/metabolismo , Dominio Catalítico/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/genética , Tratamiento Farmacológico de COVID-19
5.
bioRxiv ; 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33269349

RESUMEN

The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.

6.
Harmful Algae ; 82: 73-81, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30928012

RESUMEN

Human respiratory and gastrointestinal illnesses can result from exposures to brevetoxins originating from coastal Florida red tide blooms, comprising the marine alga Karenia brevis (K. brevis). Only limited research on the extent of human health risks and illness costs due to K. brevis blooms has been undertaken to date. Because brevetoxins are known neurotoxins that are able to cross the blood-brain barrier, it is possible that exposure to brevetoxins may be associated with neurological illnesses. This study explored whether K. brevis blooms may be associated with increases in the numbers of emergency department visits for neurological illness. An exposure-response framework was applied to test the effects of K. brevis blooms on human health, using secondary data from diverse sources. After controlling for resident population, seasonal and annual effects, significant increases in emergency department visits were found specifically for headache (ICD-9 784.0) as a primary diagnosis during proximate coastal K. brevis blooms. In particular, an increased risk for older residents (≥55 years) was identified in the coastal communities of six southwest Florida counties during K. brevis bloom events. The incidence of headache associated with K. brevis blooms showed a small but increasing association with K. brevis cell densities. Rough estimates of the costs of this illness were developed for hypothetical bloom occurrences.


Asunto(s)
Dinoflagelados , Floraciones de Algas Nocivas , Humanos , Neurotoxinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...