Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 258: 119477, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38909943

RESUMEN

In this study, UiO-67 (Zr)/g-C3N4 composites (U67N) were synthesized at wt.% ratios of 05:95, 15:85, and 30:70 using the solvothermal method at 80 °C for 24 h followed by calcination at 350 °C. The composites were characterized using UV-Vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray spectroscopy, transmission electron microscopy, and nitrogen physisorption analysis. In addition, thermal stability analysis of UiO-67 was conducted using thermogravimetric analysis. The photocatalytic performance of the composites was assessed during the degradation and mineralization of a mixture of methylparaben (MeP) and propylparaben (PrP) under simulated sunlight. The adsorption process of U67N 15:85 was characterized through kinetic studies and adsorption capacity experiments, which were modeled using pseudo-first-order and pseudo-second-order kinetics and Langmuir and Freundlich isotherms, respectively. The influence of pH levels 3, 5, and 7 on the photocatalytic degradation of the mixture was investigated, revealing enhanced degradation and mineralization at pH 3. The U67N composite exhibited dual capability in removing contaminants through adsorption and photocatalytic processes. Among the prepared composites, U67N 15:85 demonstrated the highest photocatalytic activity, achieving removal efficiencies of 96.8% for MeP, 92.5% for PrP, and 45.7% for total organic carbon in 300 kJ/m2 accumulated energy (3 h of reaction time). The detoxification of the effluent was confirmed through acute toxicity evaluation using the Vibrio fischeri method. The oxidation mechanism of the heterojunction formed between UiO-67 (Zr) and g-C3N4 was proposed based on PL analysis, photoelectrochemistry studies (including photocurrent response, Nyquist, and Mott-Schottky analyses), and scavenger assays.


Asunto(s)
Parabenos , Contaminantes Químicos del Agua , Parabenos/química , Adsorción , Contaminantes Químicos del Agua/química , Estructuras Metalorgánicas/química , Catálisis , Cinética
2.
Int J Nanomedicine ; 13: 2349-2363, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29713166

RESUMEN

INTRODUCTION: One of the main issues in the medical field and clinical practice is the development of novel and effective treatments against infections caused by antibiotic-resistant bacteria. One avenue that has been approached to develop effective antimicrobials is the use of silver nanoparticles (Ag-NPs), since they have been found to exhibit an efficient and wide spectrum of antimicrobial properties. Among the main drawbacks of using Ag-NPs are their potential cytotoxicity against eukaryotic cells and the latent environmental toxicity of their synthesis methods. Therefore, diverse green synthesis methods, which involve the use of environmentally friendly plant extracts as reductive and capping agents, have become attractive to synthesize Ag-NPs that exhibit antimicrobial effects against resistant bacteria at concentrations below toxicity thresholds for eukaryotic cells. PURPOSE: In this study, we report a green one-pot synthesis method that uses Acacia rigidula extract as a reducing and capping agent, to produce Ag-NPs with applications as therapeutic agents to treat infections in vivo. MATERIALS AND METHODS: The Ag-NPs were characterized using transmission electron microscopy (TEM), high-resolution TEM, selected area electron diffraction, energy-dispersive spectroscopy, ultraviolet-visible, and Fourier transform infrared. RESULTS: We show that Ag-NPs are spherical with a narrow size distribution. The Ag-NPs show antimicrobial activities in vitro against Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and a clinical multidrug-resistant strain of P. aeruginosa) and Gram-positive (Bacillus subtilis) bacteria. Moreover, antimicrobial effects of the Ag-NPs, against a resistant P. aeruginosa clinical strain, were tested in a murine skin infection model. The results demonstrate that the Ag-NPs reported in this work are capable of eradicating pathogenic resistant bacteria in an infection in vivo. In addition, skin, liver, and kidney damage profiles were monitored in the murine infection model, and the results demonstrate that Ag-NPs can be used safely as therapeutic agents in animal models. CONCLUSION: Together, these results suggest the potential use of Ag-NPs, synthesized by green chemistry methods, as therapeutic agents against infections caused by resistant and nonresistant strains.


Asunto(s)
Acacia/química , Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Nanopartículas del Metal/química , Plata/farmacología , Animales , Antiinfecciosos/química , Bacillus subtilis/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Femenino , Tecnología Química Verde/métodos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Extractos Vegetales/química , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Ratas Wistar , Plata/química , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA