Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38535021

RESUMEN

Numerous papers report the efficiency of the automatic interpretation capabilities of commercial algorithms. Unfortunately, these algorithms are proprietary, and academia has no means of directly contributing to these results. In fact, nothing at the same stage of development exists in academia. Despite the extensive research in ECG signal processing, from signal conditioning to expert systems, a cohesive single application for clinical use is not ready yet. This is due to a serious lack of coordination in the academic efforts, which involve not only algorithms for signal processing, but also the signal acquisition equipment itself. For instance, the different sampling rates and the different noise levels frequently found in the available signal databases can cause severe incompatibility problems when the integration of different algorithms is desired. Therefore, this work aims to solve this incompatibility problem by providing the academic community with a diagnostic-grade electrocardiograph. The intention is to create a new standardized ECG signals database in order to address the automatic interpretation problem and create an electrocardiography system that can fully assist clinical practitioners, as the proprietary systems do. Achieving this objective is expected through an open and coordinated collaboration platform for which a webpage has already been created.

2.
Sensors (Basel) ; 20(5)2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32164304

RESUMEN

In this paper, an alternative strategy for the design of a bidirectional inductive power transfer (IPT) module, intended for the continuous monitoring of cardiac pressure, is presented. This new integrated implantable medical device (IMD) was designed including a precise ventricular pressure sensor, where the available implanting room is restricted to a 1.8 × 1.8 cm2 area. This work considers a robust magnetic coupling between an external reading coil and the implantable module: a three-dimensional inductor and a touch mode capacitive pressure sensor (TMCPS) set. In this approach, the coupling modules were modelled as RCL circuits tuned at a 13.56 MHz frequency. The analytical design was validated by means of Comsol Multiphysics, CoventorWare, and ANSYS HFSS software tools. A power transmission efficiency (PTE) of 94% was achieved through a 3.5 cm-thick biological tissue, based on high magnitudes for the inductance (L) and quality factor (Q) components. A specific absorption rate (SAR) of less than 1.6 W/Kg was attained, which suggests that this IPT system can be implemented in a safe way, according to IEEE C95.1 safety guidelines. The set of inductor and capacitor integrated arrays were designed over a very thin polyimide film, where the 3D coil was 18 mm in diameter and approximately 50% reduced in size, considering any conventional counterpart. Finally, this new approach for the IMD was under development using low-cost thin film manufacturing technologies for flexible electronics. Meanwhile, as an alternative test, this novel system was fabricated using a discrete printed circuit board (PCB) approach, where preliminary electromagnetic characterization demonstrates the viability of this bidirectional IPT design.


Asunto(s)
Electrofisiología/instrumentación , Ventrículos Cardíacos , Presión Ventricular , Tejido Adiposo/patología , Suministros de Energía Eléctrica , Electrónica , Electrofisiología/métodos , Diseño de Equipo , Humanos , Magnetismo/instrumentación , Músculos/patología , Seguridad del Paciente , Prótesis e Implantes , Procesamiento de Señales Asistido por Computador , Piel/patología , Tecnología Inalámbrica/instrumentación
3.
Sensors (Basel) ; 18(9)2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30149510

RESUMEN

This paper reports the novel design of a touch mode capacitive pressure sensor (TMCPS) system with a wireless approach for a full-range continuous monitoring of ventricular pressure. The system consists of two modules: an implantable set and an external reading device. The implantable set, restricted to a 2 × 2 cm² area, consists of a TMCPS array connected with a dual-layer coil, for making a reliable resonant circuit for communication with the external device. The capacitive array is modelled considering the small deflection regime for achieving a dynamic and full 5⁻300 mmHg pressure range. In this design, the two inductive-coupled modules are calculated considering proper electromagnetic alignment, based on two planar coils and considering the following: 13.56 MHz frequency to avoid tissue damage and three types of biological tissue as core (skin, fat and muscle). The system was validated with the Comsol Multiphysics and CoventorWare softwares; showing a 90% power transmission efficiency at a 3.5 cm distance between coils. The implantable module includes aluminum- and polyimide-based devices, which allows ergonomic, robust, reproducible, and technologically feasible integrated sensors. In addition, the module shows a simplified and low cost design approach based on PolyMEMS INAOE® technology, featured by low-temperature processing.


Asunto(s)
Capacidad Eléctrica , Diseño de Equipo , Monitoreo Fisiológico/instrumentación , Prótesis e Implantes , Presión Ventricular , Tecnología Inalámbrica , Tejido Adiposo , Humanos , Músculos , Prótesis e Implantes/economía , Piel , Tecnología Inalámbrica/economía
4.
ScientificWorldJournal ; 2014: 692434, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25097887

RESUMEN

An analysis of the effect of distance and alignment between two magnetically coupled coils for wireless power transfer in intraocular pressure measurement is presented. For measurement purposes, a system was fabricated consisting of an external device, which is a Maxwell-Wien bridge circuit variation, in charge of transferring energy to a biomedical implant and reading data from it. The biomedical implant is an RLC tank circuit, encapsulated by a polyimide coating. Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity. The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal. The analysis presented in this paper proves that wireless transmission of power for intraocular pressure measurement is feasible with the measurement system proposed. In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.


Asunto(s)
Tonometría Ocular/métodos , Tecnología Inalámbrica/instrumentación , Tonometría Ocular/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...