Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 270(Pt 2): 132281, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740150

RESUMEN

DapE is a Zn2+-metallohydrolase recognized as a drug target for bacterial control. It is a homodimer that requires the exchange of interface strands by an induced fit essential for catalysis. Identifying novel anti-DapE agents requires greater structural details. Most of the characterized DapEs are from the Gram-negative group. Here, two high-resolution DapE crystal structures from Enterococcus faecium are presented for the first time with novel aspects. A loosened enzyme intermediate between the open and closed conformations is observed. Substrates may bind to loose state, subsequently it closes, where hydrolysis occurs, and finally, the change to the open state leads to the release of the products. Mutation of His352 suggests a role, along with His194, in the oxyanion stabilization in the mono-metalated Zn2+ isoform, while in the di-metalated isoform, the metal center 2 complements it function. An aromatic-π box potentially involved in the interaction of DapE with other proteins, and a peptide flip could determine the specificity in the Gram-positive ArgE/DapE group. Finally, details of two extra-catalytic cavities whose geometry changes depending on the conformational state of the enzyme are presented. These cavities could be a target for developing non-competitive agents that trap the enzyme in an inactive state.


Asunto(s)
Proteínas Bacterianas , Enterococcus faecium , Enterococcus faecium/enzimología , Especificidad por Sustrato , Ligandos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Conformación Proteica , Zinc/química , Zinc/metabolismo , Dominio Catalítico , Amidohidrolasas/química , Amidohidrolasas/metabolismo , Amidohidrolasas/genética , Cristalografía por Rayos X , Secuencia de Aminoácidos , Unión Proteica
2.
Biochem Biophys Rep ; 37: 101649, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38318524

RESUMEN

Mycobacterium tuberculosis catalase-peroxidase (Mt-KatG) is a bifunctional heme-dependent enzyme that has been shown to activate isoniazid (INH), the widely used antibiotic against tuberculosis (TB). The L333V-KatG variant has been associated with INH resistance in clinical M. tuberculosis isolates from Mexico. To understand better the mechanisms of INH activation, its catalytic properties (catalase, peroxidase, and IN-NAD formation) and crystal structure were compared with those of the wild-type enzyme (WT-KatG). The rate of IN-NAD formation mediated by WT-KatG was 23% greater than L333V-KatG when INH concentration is varied. In contrast to WT-KatG, the crystal structure of the L333V-KatG variant has a perhydroxy modification of the indole nitrogen of W107 from MYW adduct. L333V-KatG shows most of the active site residues in a similar position to WT-KatG; only R418 is in the R-conformation instead of the double R and Y conformation present in WT-KatG. L333V-KatG shows a small displacement respect to WT-KatG in the helix from R385 to L404 towards the mutation site, an increase in length of the coordination bond between H270 and heme Fe, and a longer H-bond between proximal D381 and W321, compared to WT-KatG; these small displacements could explain the altered redox potential of the heme, and result in a less active and stable enzyme.

3.
Int J Biol Macromol ; 259(Pt 1): 129226, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184030

RESUMEN

In higher eukaryotes and plants, the last two sequential steps in the de novo biosynthesis of uridine 5'-monophosphate (UMP) are catalyzed by a bifunctional natural chimeric protein called UMP synthase (UMPS). In higher plants, UMPS consists of two naturally fused enzymes: orotate phosphoribosyltransferase (OPRTase) at N-terminal and orotidine-5'-monophosphate decarboxylase (ODCase) at C-terminal. In this work, we obtained the full functional recombinant protein UMPS from Coffea arabica (CaUMPS) and studied its structure-function relationships. A biochemical and structural characterization of a plant UMPS with its two functional domains is described together with the presentation of the first crystal structure of a plant ODCase at 1.4 Å resolution. The kinetic parameters measured of CaOPRTase and CaODCase domains were comparable to those reported. The crystallographic structure revealed that CaODCase is a dimer that conserves the typical fold observed in other ODCases from prokaryote and eukaryote with a 1-deoxy-ribofuranose-5'-phosphate molecule bound in the active site of one subunit induced a closed conformation. Our results add to the knowledge of one of the key enzymes of the de novo biosynthesis of pyrimidines in plant metabolism and open the door to future applications.


Asunto(s)
Carboxiliasas , Coffea , Orotato Fosforribosiltransferasa/química , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/genética , Orotidina-5'-Fosfato Descarboxilasa/química , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Complejos Multienzimáticos/química , Proteínas Recombinantes/genética , Uridina Monofosfato
4.
Pathogens ; 12(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36678426

RESUMEN

To understand whether protein Tv-PSP1 from Trichomonas vaginalis recognizes mRNA parasite stem-loop structures, we conducted REMSA and intrinsic fluorescence assays. We found the recombinant Tv-PSP1 structure, determined with X-ray crystallography, showed unusual thermal stability of the quaternary structure, associated with a disulfide bridge CYS76-CYS104. To gain deeper insight into the Tv-PSP1 interaction with mRNA stem-loops (mRNAsl) and its relationship with thermal stability, we also used an integrated computational protocol that combined molecular dynamics simulations, docking assays, and binding energy calculations. Docking models allowed us to determine a putative contact surface interaction region between Tv-PSP1 and mRNAsl. We determined the contributions of these complexes to the binding free energy (ΔGb) in the electrostatic (ΔGelec) and nonelectrostatic (ΔGnon-elec) components using the Adaptive Poisson-Boltzmann Solver (APBS) program. We are the first, to the best of our knowledge, to show the interaction between Tv-PSP1 and the stem-loop structures of mRNA.

5.
Antioxidants (Basel) ; 11(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35624843

RESUMEN

Bacterial and fungal large-size subunit catalases (LSCs) are like small-size subunit catalases (SSCs) but have an additional C-terminal domain (CT). The catalytic domain is conserved at both primary sequence and structural levels and its amino acid composition is optimized to select H2O2 over water. The CT is structurally conserved, has an amino acid composition similar to very stable proteins, confers high stability to LSCs, and has independent molecular chaperone activity. While heat and denaturing agents increased Neurospora crassa catalase-1 (CAT-1) activity, a CAT-1 version lacking the CT (C63) was no longer activated by these agents. The addition of catalase-3 (CAT-3) CT to the CAT-1 or CAT-3 catalase domains prevented their heat denaturation in vitro. Protein structural alignments indicated CT similarity with members of the DJ-1/PfpI superfamily and the CT dimers present in LSCs constitute a new type of symmetric dimer within this superfamily. However, only the bacterial Hsp31 proteins show sequence similarity to the bacterial and fungal catalase mobile coil (MC) and are phylogenetically related to MC_CT sequences. LSCs might have originated by fusion of SSC and Hsp31 encoding genes during early bacterial diversification, conferring at the same time great stability and molecular chaperone activity to the novel catalases.

6.
Proteins ; 90(9): 1684-1698, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35435259

RESUMEN

Proliferating cell nuclear antigen (PCNA) is an essential protein for cell viability in archaea and eukarya, since it is involved in DNA replication and repair. In order to obtain insights regarding the characteristics that confer radioresistance, the structural study of the PCNA from Thermococcus gammatolerans (PCNATg ) in a gradient of ionizing radiation by X-ray crystallography was carried out, together with a bioinformatic analysis of homotrimeric PCNA structures, their sequences, and their molecular interactions. The results obtained from the datasets and the accumulated radiation dose for the last collection from three crystals revealed moderate and localized damage, since even with the loss of resolution, the electron density map corresponding to the last collection allowed to build the whole structure. Attempting to understand this behavior, multiple sequence alignments, and structural superpositions were performed, revealing that PCNA is a protein with a poorly conserved sequence, but with a highly conserved structure. The PCNATg presented the highest percentage of charged residues, mostly negatively charged, with a proportion of glutamate more than double aspartate, lack of cysteines and tryptophan, besides a high number of salt bridges. The structural study by X-ray crystallography reveals that the PCNATg has the intrinsic ability to resist high levels of ionizing radiation, and the bioinformatic analysis suggests that molecular evolution selected a particular composition of amino acid residues, and their consequent network of synergistic interactions for extreme conditions, as a collateral effect, conferring radioresistance to a protein involved in the chromosomal DNA metabolism of a radioresistant microorganism.


Asunto(s)
Thermococcus , ADN/metabolismo , Reparación del ADN , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Radiación Ionizante , Thermococcus/química , Thermococcus/genética
7.
J Biol Chem ; 296: 100178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33303628

RESUMEN

Levansucrases (LSs) synthesize levan, a ß2-6-linked fructose polymer, by successively transferring the fructosyl moiety from sucrose to a growing acceptor molecule. Elucidation of the levan polymerization mechanism is important for using LSs in the production of size-defined products for application in the food and pharmaceutical industries. For a deeper understanding of the levan synthesis reaction, we determined the crystallographic structure of Bacillus subtilis LS (SacB) in complex with a levan-type fructooligosaccharide and utilized site-directed mutagenesis to identify residues involved in substrate binding. The presence of a levanhexaose molecule in the central catalytic cavity allowed us to identify five substrate-binding subsites (-1, +1, +2, +3, and +4). Mutants affecting residues belonging to the identified acceptor subsites showed similar substrate affinity (Km) values to the wildtype (WT) Km value but had a lower turnover number and transfructosylation/hydrolysis ratio. Of importance, compared with the WT, the variants progressively yielded smaller-sized low-molecular-weight levans, as the affected subsites that were closer to the catalytic site, but without affecting their ability to synthesized high-molecular-weight levans. Furthermore, an additional oligosaccharide-binding site 20 Å away from the catalytic pocket was identified, and its potential participation in the elongation mechanism is discussed. Our results clarify, for the first time, the interaction of the enzyme with an acceptor/product oligosaccharide and elucidate the molecular basis of the nonprocessive levan elongation mechanism of LSs.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Hexosiltransferasas/metabolismo , Oligosacáridos/metabolismo , Bacillus subtilis/química , Proteínas Bacterianas/química , Cristalografía por Rayos X , Hexosiltransferasas/química , Modelos Moleculares , Oligosacáridos/química , Conformación Proteica
8.
Int J Biol Macromol ; 161: 898-908, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32553967

RESUMEN

Mutation S164A largely affects the transfructosylation properties of Bacillus subtilis levansucrase (SacB). The variant uses acceptors such as glucose and short levans with an average molecular weight of 7.6 kDa more efficiently than SacB, leading to the enhanced synthesis of medium and high molecular weight polymer and a blasto-oligosaccharide series with a polymerization degree of 2-10. A 3-fold increase in blasto-oligosaccharides yield is provoked by the modified interplay between the variant and glucose. Despite its modified product specificity, protein-carbohydrate and protein-protein interactions are still a major factor affecting size and distribution of levan molecular weight. This study highlights the importance of critical factors such as protein concentration in the analysis of wild-type and mutagenized levansucrases. Docking experiments with the crystal structures of SacB and variant S164A - the latter obtained at a 2.6 Å resolution - identified unreported potential binding subsites for fructosyl moieties on the surface of both enzymes.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/genética , Fructanos/genética , Hexosiltransferasas/genética , Mutación/genética , Sitios de Unión/genética , Metabolismo de los Hidratos de Carbono/genética , Glucosa/genética , Cinética , Peso Molecular , Oligosacáridos/genética , Mapas de Interacción de Proteínas/genética
9.
Biochem Biophys Rep ; 20: 100682, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31517067

RESUMEN

Light chain amyloidosis is one of the most common systemic amyloidosis, characterized by the deposition of immunoglobulin light variable domain as insoluble amyloid fibrils in vital organs, leading to the death of patients. Germline λ6a is closely related with this disease and has been reported that 25% of proteins encoded by this germline have a change at position 24 where an Arg is replaced by a Gly (R24G). This germline variant reduces protein stability and increases the propensity to form amyloid fibrils. In this work, the crystal structure of 6aJL2-R24G has been determined to 2.0 Šresolution by molecular replacement. Crystal belongs to space group I212121 (PDB ID 5JPJ) and there are two molecules in the asymmetric unit. This 6aJL2-R24G structure as several related in PDB (PDB entries: 5C9K, 2W0K, 5IR3 and 1PW3) presents by crystal packing the formation of an octameric assembly in a helicoidal arrangement, which has been proposed as an important early stage in amyloid fibril aggregation. However, other structures of other protein variants in PDB (PDB entries: 3B5G, 3BDX, 2W0L, 1CD0 and 2CD0) do not make the octameric assembly, regardless their capacity to form fibers in vitro or in vivo. The analysis presented here shows that the ability to form the octameric assembly in a helicoidal arrangement in crystallized light chain immunoglobulin proteins is not required for amyloid fibril formation in vitro. In addition, the fundamental role of partially folded states in the amyloid fibril formation in vitro, is not described in any crystallographic structure published or analyzed here, being those structures, in any case examples of proteins in their native states. Those partially folded states have been recently described by cryo-EM studies, showing the necessity of structural changes in the variants before the amyloid fiber formation process starts.

10.
Biochem Biophys Rep ; 13: 32-38, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29556562

RESUMEN

Understanding Peroxidase (PRXs) enzymatic diversity and functional significance from a three-dimensional point of view is a key point for structural and mechanistic studies. In this context, Zo-peroxidase (ZoPrx) a member of the class III peroxidases and secreted by plants, differs from all previously described PRXs because of its remarkable catalytic stability in the presence of hydrogen peroxide. In this work, we present the crystallographic structure of ZoPrx isolated from Japanese radish, at 2.05 Å resolution. The mature enzyme consists of a single monomer of 308 residues exhibiting the same fold as all previously described members of the plant PRXs superfamily. Furthermore, the enzyme contains a heme b group as the prosthetic group and two Ca2+ binding sites. Moreover, seven N-glycosylation sites were found in the structure, and 49 glycans bound to the two ZoPrx molecules found in the asymmetric unit are clearly visible in the electron density map. The comparison of ZoPrx coordinates with homologous enzymes revealed minor structural changes, in which the residue 177 appears to be responsible for enlarging the access to the heme cavity, the only structural finding which may be related to the H2O2 tolerance of ZoPrx and detected by X-ray crystallography. Because of its characteristics, ZoPrx has a broad range of potential applications from chemical synthesis to environmental biocatalysis, thus its aminoacidic sequence, partially completed using the electron density, and the three-dimensional structure itself, become a possible starting point to engineering heme-peroxidases to enhance oxidative stability.

11.
Arch Biochem Biophys ; 640: 17-26, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29305053

RESUMEN

CAT-2, a cytosolic catalase-peroxidase (CP) from Neurospora crassa, which is induced during asexual spore formation, was heterologously expressed and characterized. CAT-2 had the Met-Tyr-Trp (M-Y-W) adduct required for catalase activity. Its KM for H2O2 was micromolar for peroxidase and millimolar for catalase activity. A Em = -158 mV reduction potential value was obtained and the Soret band shift suggested a mixture of low and high spin ferric iron. CAT-2 EPR spectrum at 10 K indicated an axial and a rhombic component. With peroxyacetic acid (PAA), formation of Compound I* was observed with EPR. CAT-2 homodimer crystallographic structure contained two K+ ions; Glu107 residues were displaced to bind them. CAT-2 showed the essential amino acid residues for activity in similar positions to other CPs. CAT-2 Arg426 is oriented towards the M-Y-W adduct, interacting with the deprotonated Tyr238 hydroxyl group. A perhydroxy modification of the indole nitrogen of Trp90 was oriented toward the catalytic His91. In contrast to cytochrome c peroxidase and ascorbate peroxidase, the catalase-peroxidase heme propionates are not exposed to the solvent. Together with other N. crassa enzymes that utilize H2O2 as a substrate, CAT-2 has many tryptophan and proline residues at its surface, probably related to H2O2 selection in water.


Asunto(s)
Catalasa/metabolismo , Citosol/enzimología , Peróxido de Hidrógeno/metabolismo , Neurospora crassa/enzimología , Peroxidasas/metabolismo , Catalasa/química , Catalasa/genética , Clonación Molecular , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Regulación de la Expresión Génica , Cinética , Oxidación-Reducción , Peroxidasas/química , Conformación Proteica , Multimerización de Proteína , Triptófano/metabolismo , Tirosina/metabolismo
12.
Biochem Biophys Rep ; 8: 284-289, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28955968

RESUMEN

The importance of sample homogeneity and purity in protein crystallization is essential to obtain high-quality diffracting crystals. Here, in an attempt to determine the crystal structure of thioredoxin 1 from whiteleg shrimp Litopenaeus vannamei (LvTrx), we inadvertently crystallized the hexameric inorganic pyrophosphatase of Escherichia coli (E-PPase) from a non-homogeneous sample product during the initial over-expression steps and partial purification of LvTrx. The structure determination and identification of the crystallized protein were derived from several clues: the failures in the Molecular Replacement (MR) trials using LvTrx coordinates as a search model, the unit cell parameters and space group determination, and essentially by the use of the program BALBES. After using the previously deposited E-PPase structure (PDB entry 1mjw) as a search model and the correct space group assignation, the MR showed an E-PPase complexed with SO4-2 with small changes in the sulfate ion binding region when it compares to previously deposited E-PPases in the PDB. This work stresses the importance of protein purity to avoid the risk of crystallizing a contaminant protein or how pure need to be a protein sample in order to increase the possibility to obtain crystals, but also serves as a reminder that crystallization is by itself a purification process and how the program BALBES can be useful in the crystal structure determination of previously deposited structures in the PDB.

13.
IUBMB Life ; 64(6): 521-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22605678

RESUMEN

One of the hallmarks of life is the widespread use of certain essential ribozymes. The ubiquitous ribonuclease P (RNase P) and eukaryotic RNase MRP are essential complexes where a structured, noncoding RNA acts in catalysis. Recent discoveries have elucidated the three-dimensional structure of the ancestral ribonucleoprotein complex, suggested the possibility of a protein-only composition in organelles, and even noted the absence of RNase P in a non-free-living organism. With respect to these last two findings, import mechanisms for RNases P/MRP into mitochondria have been demonstrated, and RNase P is present in organisms with some of the smallest known genomes. Together, these results have led to an ongoing debate regarding the precise definition of how "essential" these ribozymes truly are.


Asunto(s)
Endorribonucleasas/fisiología , Ribonucleasa P/fisiología , Ribonucleoproteínas/fisiología , Animales , Dominio Catalítico , Endorribonucleasas/química , Evolución Molecular , Humanos , Conformación de Ácido Nucleico , ARN/química , ARN/genética , Ribonucleasa P/química , Ribonucleoproteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...