Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33903230

RESUMEN

Neuropeptides and neurotrophic factors secreted from dense core vesicles (DCVs) control many brain functions, but the calcium sensors that trigger their secretion remain unknown. Here, we show that in mouse hippocampal neurons, DCV fusion is strongly and equally reduced in synaptotagmin-1 (Syt1)- or Syt7-deficient neurons, but combined Syt1/Syt7 deficiency did not reduce fusion further. Cross-rescue, expression of Syt1 in Syt7-deficient neurons, or vice versa, completely restored fusion. Hence, both sensors are rate limiting, operating in a single pathway. Overexpression of either sensor in wild-type neurons confirmed this and increased fusion. Syt1 traveled with DCVs and was present on fusing DCVs, but Syt7 supported fusion largely from other locations. Finally, the duration of single DCV fusion events was reduced in Syt1-deficient but not Syt7-deficient neurons. In conclusion, two functionally redundant calcium sensors drive neuromodulator secretion in an expression-dependent manner. In addition, Syt1 has a unique role in regulating fusion pore duration.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Neurotransmisores/química , Sinaptotagmina I/genética , Sinaptotagminas/genética , Animales , Calcio/química , Calcio/metabolismo , Vesículas de Núcleo Denso/genética , Vesículas de Núcleo Denso/metabolismo , Regulación de la Expresión Génica/genética , Hipocampo/metabolismo , Humanos , Ratones , Factores de Crecimiento Nervioso/química , Factores de Crecimiento Nervioso/metabolismo , Neuronas/patología , Neuropéptidos/química , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo
2.
J Neurosci ; 40(13): 2606-2617, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32098902

RESUMEN

Regulated secretion is controlled by Ca2+ sensors with different affinities and subcellular distributions. Inactivation of Syt1 (synaptotagmin-1), the main Ca2+ sensor for synchronous neurotransmission in many neurons, enhances asynchronous and spontaneous release rates, suggesting that Syt1 inhibits other sensors with higher Ca2+ affinities and/or lower cooperativities. Such sensors could include Doc2a and Doc2b, which have been implicated in spontaneous and asynchronous neurotransmitter release and compete with Syt1 for binding SNARE complexes. Here, we tested this hypothesis using triple-knock-out mice. Inactivation of Doc2a and Doc2b in Syt1-deficient neurons did not reduce the high spontaneous release rate. Overexpression of Doc2b variants in triple-knock-out neurons reduced spontaneous release but did not rescue synchronous release. A chimeric construct in which the C2AB domain of Syt1 was substituted by that of Doc2b did not support synchronous release either. Conversely, the soluble C2AB domain of Syt1 did not affect spontaneous release. We conclude that the high spontaneous release rate in synaptotagmin-deficient neurons does not involve the binding of Doc2 proteins to Syt1 binding sites in the SNARE complex. Instead, our results suggest that the C2AB domains of Syt1 and Doc2b specifically support synchronous and spontaneous release by separate mechanisms. (Both male and female neurons were studied without sex determination.)SIGNIFICANCE STATEMENT Neurotransmission in the brain is regulated by presynaptic Ca2+ concentrations. Multiple Ca2+ sensor proteins contribute to synchronous (Syt1, Syt2), asynchronous (Syt7), and spontaneous (Doc2a/Doc2b) phases of neurotransmitter release. Genetic ablation of synchronous release was previously shown to affect other release phases, suggesting that multiple sensors may compete for similar release sites, together encoding stimulus-secretion coupling over a large range of synaptic Ca2+ concentrations. Here, we investigated the extent of functional overlap between Syt1, Doc2a, and Doc2b by reintroducing wild-type and mutant proteins in triple-knock-out neurons, and conclude that the sensors are highly specialized for different phases of release.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Sinaptotagmina I/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Transmisión Sináptica/fisiología , Sinaptotagmina I/genética
3.
Science ; 327(5973): 1614-8, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20150444

RESUMEN

Synaptic vesicle fusion in brain synapses occurs in phases that are either tightly coupled to action potentials (synchronous), immediately following action potentials (asynchronous), or as stochastic events in the absence of action potentials (spontaneous). Synaptotagmin-1, -2, and -9 are vesicle-associated Ca2+ sensors for synchronous release. Here we found that double C2 domain (Doc2) proteins act as Ca2+ sensors to trigger spontaneous release. Although Doc2 proteins are cytosolic, they function analogously to synaptotagmin-1 but with a higher Ca2+ sensitivity. Doc2 proteins bound to N-ethylmaleimide-sensitive factor attachment receptor (SNARE) complexes in competition with synaptotagmin-1. Thus, different classes of multiple C2 domain-containing molecules trigger synchronous versus spontaneous fusion, which suggests a general mechanism for synaptic vesicle fusion triggered by the combined actions of SNAREs and multiple C2 domain-containing proteins.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/fisiología , Potenciales de Acción , Animales , Sitios de Unión , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Células Cultivadas , Potenciales Postsinápticos Excitadores , Hipocampo/citología , Potenciales Postsinápticos Inhibidores , Fusión de Membrana , Ratones , Ratones Noqueados , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Células de Purkinje/fisiología , Ratas , Proteínas SNARE/metabolismo , Sinaptotagmina I/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...