Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Beilstein J Org Chem ; 20: 950-958, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711589

RESUMEN

Tetrazole is widely utilized as a bioisostere for carboxylic acid in the field of medicinal chemistry and drug development, enhancing the drug-like characteristics of various molecules. Typically, tetrazoles are introduced from their nitrile precursors through late-stage functionalization. In this work, we propose a novel strategy involving the use of diversely protected, unprecedented tetrazole aldehydes as building blocks. This approach facilitates the incorporation of the tetrazole group into multicomponent reactions or other chemistries, aiding in the creation of a variety of complex, drug-like molecules. These innovative tetrazole building blocks are efficiently and directly synthesized using a Passerini three-component reaction (PT-3CR), employing cost-effective and readily available materials. We further showcase the versatility of these new tetrazole building blocks by integrating the tetrazole moiety into various multicomponent reactions (MCRs), which are already significantly employed in drug discovery. This technique represents a unique and complementary method to existing tetrazole synthesis processes. It aims to meet the growing demand for tetrazole-based compound libraries and novel scaffolds, which are challenging to synthesize through other methods.

2.
Cell Death Discov ; 10(1): 211, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697979

RESUMEN

Forkhead box protein M1 (FOXM1) is often overexpressed in human cancers and strongly associated with therapy resistance and less good patient survival. The chemotherapy options for patients with the most aggressive types of solid cancers remain very limited because of the acquired drug resistance, making the therapy less effective. NPM1 mutation through the inactivation of FOXM1 via FOXM1 relocalization to the cytoplasm confers more favorable treatment outcomes for AML patients, confirming FOXM1 as a crucial target to overcome drug resistance. Pharmacological inhibition of FOXM1 could be a promising approach to sensitize therapy-resistant cancers. Here, we explore a novel FOXM1 inhibitor STL001, a first-generation modification drug of our previously reported FOXM1 inhibitor STL427944. STL001 preserves the mode of action of the STL427944; however, STL001 is up to 50 times more efficient in reducing FOXM1 activity in a variety of solid cancers. The most conventional cancer therapies studied here induce FOXM1 overexpression in solid cancers. The therapy-induced FOXM1 overexpression may explain the failure or reduced efficacy of these drugs in cancer patients. Interestingly, STL001 increased the sensitivity of cancer cells to conventional cancer therapies by suppressing both the high-endogenous and drug-induced FOXM1. Notably, STL001 does not provide further sensitization to FOXM1-KD cancer cells, suggesting that the sensitization effect is conveyed specifically through FOXM1 suppression. RNA-seq and gene set enrichment studies revealed prominent suppression of FOXM1-dependent pathways and gene ontologies. Also, gene regulation by STL001 showed extensive overlap with FOXM1-KD, suggesting a high selectivity of STL001 toward the FOXM1 regulatory network. A completely new activity of FOXM1, mediated through steroid/cholesterol biosynthetic process and protein secretion in cancer cells was also detected. Collectively, STL001 offers intriguing translational opportunities as combination therapies targeting FOXM1 activity in a variety of human cancers driven by FOXM1.

3.
ChemMedChem ; : e202300688, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602859

RESUMEN

Aspartate transcarbamoylase (ATC) is the first committed step in de novo pyrimidine biosynthesis in eukaryotes and plants. A potent transition state analog of human ATCase (PALA) has previously been assessed in clinical trials for the treatment of cancer, but was ultimately unsuccessful. Additionally, inhibition of this pathway has been proposed to be a target to suppress cell proliferation in E. coli, the malarial parasite and tuberculosis. In this manuscript we screened a 70-member library of ATC inhibitors developed against the malarial and tubercular ATCases for inhibitors of the human ATC. Four compounds showed low nanomolar inhibition (IC50 30-120 nM) in an in vitro activity assay. These compounds significantly outperform PALA, which has a triphasic inhibition response under identical conditions, in which significant activity remains at PALA concentrations above 10 µM. Evidence for a druggable allosteric pocket in human ATC is provided by both in vitro enzyme kinetic, homology modeling and in silico docking. These compounds also suppress the proliferation of U2OS osteoblastoma cells by promoting cell cycle arrest in G0/G1 phase. This report provides the first evidence for an allosteric pocket in human ATC, which greatly enhances its druggability and demonstrates the potential of this series in cancer therapy.

4.
Front Pharmacol ; 15: 1358089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650632

RESUMEN

This study discusses the synthesis and use of a new library of spirooxindole-benzimidazole compounds as inhibitors of the signal transducer and activator of p53, a protein involved in regulating cell growth and cancer prevention. The text includes the scientific details of the [3 + 2] cycloaddition (32CA) reaction between azomethine ylide 7a and ethylene 3a within the framework of Molecular Electron Density Theory. The mechanism of the 32CA reaction proceeds through a two-stage one-step process, with emphasis on the highly asynchronous transition state structure. The anti-cancer properties of the synthesized compounds, particularly 6a and 6d, were evaluated. The inhibitory effects of these compounds on the growth of tumor cells (MDA-MB 231 and PC-3) were quantified using IC50 values. This study highlights activation of the p53 pathway by compounds 6a and 6d, leading to upregulation of p53 expression and downregulation of cyclin D and NF-κB in treated cells. Additionally, we explored the binding affinity of spirooxindole analogs, particularly compound 6d, to MDM2, a protein involved in regulation of p53. The binding mode and position of compound 6d were compared with those of a co-crystallized standard ligand, suggesting its potential as a lead compound for further preclinical research.

5.
RSC Med Chem ; 15(4): 1210-1215, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38665826

RESUMEN

The progress in cancer survival and treatment has witnessed a remarkable transformation through the innovative approach of targeting the inhibitory immune checkpoint protein PD-1/PD-L1 complex by mAbs, e.g. pembrolizumab (Keytruda). While generating 17.2 billion U.S. dollars in revenue in 2021, the true significance of these developments lies in their ability to enhance cancer patient outcomes. Despite the proven efficacy of mAbs in inhibiting the PD-1/PD-L1 signaling pathways, they face significant challenges, including limited response rates, high production costs, missing oral bioavailability, and extended half-lives that can lead to immune-related adverse effects. A promising alternative approach involves the use of small molecules acting as PD-1/PD-L1 antagonists to stimulate PD-L1 dimerization. However, the precise mechanisms of action of these molecules remain partially understood, posing challenges to their development. In this context, our research focuses on the creation of a novel scaffold based on the Ugi tetrazole four-component reaction (UT-4CR) to develop low-molecular-weight inhibitors of PD-L1. Employing structure-based methods, we synthesized a library of small compounds using biphenyl vinyl isocyanide, leading to the discovery of a structure-activity relationship among 1,5-disubstituted tetrazole-based inhibitors. Supported by a cocrystal structure with PD-L1, these inhibitors underwent biophysical testing, including HTRF and protein NMR experiments, resulting in the identification of potent candidates with sub-micromolar PD-L1 affinities. This finding opens opportunities to the further development of a new class of PD-L1 antagonists, holding promise for improved cancer immunotherapy strategies.

6.
J Org Chem ; 89(2): 957-974, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38175810

RESUMEN

The isocyanide group is the chameleon among the functional groups in organic chemistry. Unlike other multiatom functional groups, where the electrophilic and nucleophilic moieties are typically separated, isocyanides combine both functionalities in the terminal carbon. This unique feature can be rationalized using the frontier orbital concept and has significant implications for its intermolecular interactions and the reactivity of the functional group. In this study, we perform a Cambridge Crystallographic Database-supported analysis of isocyanide intramolecular interactions to investigate the intramolecular interactions of isocyanides in the solid state, excluding isocyanide-metal complexes. We discuss examples of different interaction classes, including the isocyanide as a hydrogen bond acceptor (RNC···HX), halogen bonding (RNC···X), and interactions involving the isocyanide and carbon atoms (RNC···C). The latter interaction serves as an intriguing illustration of a Bürgi-Dunitz trajectory and represents a crucial experimental detail in the well-known multicomponent reactions such as the Ugi- and Passerini-type mechanisms. Understanding the spectrum of intramolecular interactions that isocyanides can undergo holds significant implications in fields such as medicinal chemistry, materials science, and asymmetric catalysis.

7.
Org Lett ; 26(4): 829-833, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38227542

RESUMEN

Multicomponent reactions, particularly the Passerini reaction, serve as efficient tools for the synthesis of druglike molecules and the creation of compound libraries. Despite the effectiveness of the Passerini reaction, the limited alternatives to the crucial carboxylic acid component pose a structural constraint. Here, we have discovered that the phthalimide moiety and its derivatives react in the Passerini reaction as an acid component. We explored their potential in synthesizing diverse and intricate molecules. The phthalimide moiety stands out as a favorable building block due to its oxidative stability, heat-stable characteristics, and resistance to solvents. Our approach introduces a novel perspective to multicomponent reactions by incorporating NH-based acid components, addressing the ongoing need for the development of innovative molecular scaffolds.

8.
Biomed Pharmacother ; 171: 116163, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38242037

RESUMEN

Small conductance calcium-activated potassium (SK) channel activity has been proposed to play a role in the pathology of several neurological diseases. Besides regulating plasma membrane excitability, SK channel activation provides neuroprotection against ferroptotic cell death by reducing mitochondrial Ca2+ uptake and reactive oxygen species (ROS). In this study, we employed a multifaceted approach, integrating structure-based and computational techniques, to strategically design and synthesize an innovative class of potent small-molecule SK2 channel modifiers through highly efficient multicomponent reactions (MCRs). The compounds' neuroprotective activity was compared with the well-studied SK positive modulator, CyPPA. Pharmacological SK channel activation by selected compounds confers neuroprotection against ferroptosis at low nanomolar ranges compared to CyPPA, that mediates protection at micromolar concentrations, as shown by an MTT assay, real-time cell impedance measurements and propidium iodide staining (PI). These novel compounds suppress increased mitochondrial ROS and Ca2+ level induced by ferroptosis inducer RSL3. Moreover, axonal degeneration was rescued by these novel SK channel activators in primary mouse neurons and they attenuated glutamate-induced neuronal excitability, as shown via microelectrode array. Meanwhile, functional afterhyperpolarization of the novel SK2 channel modulators was validated by electrophysiological measurements showing more current change induced by the novel modulators than the reference compound, CyPPA. These data support the notion that SK2 channel activation can represent a therapeutic target for brain diseases in which ferroptosis and excitotoxicity contribute to the pathology.


Asunto(s)
Ferroptosis , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Neuronas/metabolismo , Mitocondrias/metabolismo
11.
J Cell Mol Med ; 28(1): e18015, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37938877

RESUMEN

Insulin resistance is a significant contributor to the development of type 2 diabetes (T2D) and is associated with obesity, physical inactivity, and low maximal oxygen uptake. While intense and prolonged exercise may have negative effects, physical activity can have a positive influence on cellular metabolism and the immune system. Moderate exercise has been shown to reduce oxidative stress and improve antioxidant status, whereas intense exercise can increase oxidative stress in the short term. The impact of exercise on pro-inflammatory cytokine production is complex and varies depending on intensity and duration. Exercise can also counteract the harmful effects of ageing and inflamm-ageing. This review aims to examine the molecular pathways altered by exercise in non-obese individuals at higher risk of developing T2D, including glucose utilization, lipid metabolism, mitochondrial function, inflammation and oxidative stress, with the potential to improve insulin sensitivity. The focus is on understanding the potential benefits of exercise for improving insulin sensitivity and providing insights for future targeted interventions before onset of disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo , Ejercicio Físico , Insulina/metabolismo
12.
Nat Commun ; 14(1): 8437, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114468

RESUMEN

Thalidomide and its analogs are molecular glues (MGs) that lead to targeted ubiquitination and degradation of key cancer proteins via the cereblon (CRBN) E3 ligase. Here, we develop a direct-to-biology (D2B) approach for accelerated discovery of MGs. In this platform, automated, high throughput, and nano scale synthesis of hundreds of pomalidomide-based MGs was combined with rapid phenotypic screening, enabling an unprecedented fast identification of potent CRBN-acting MGs. The small molecules were further validated by degradation profiling and anti-cancer activity. This revealed E14 as a potent MG degrader targeting IKZF1/3, GSPT1 and 2 with profound effects on a panel of cancer cells. In a more generalized view, integration of automated, nanoscale synthesis with phenotypic assays has the potential to accelerate MGs discovery.


Asunto(s)
Péptido Hidrolasas , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Péptido Hidrolasas/metabolismo , Ubiquitinación , Proteolisis , Biología
13.
J Inflamm Res ; 16: 5427-5438, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026244

RESUMEN

Introduction: Physical activity-associated immune response plays a crucial role in the aging process. This study aimed to determine the impact of short-term moderate physical activity on cytokine levels, oxidative stress markers, and telomere length in lean/overweight young subjects. Methods: Fasting blood samples were collected from 368 participants at Qatar Biobank. Based on their homeostatic model assessment of insulin resistance (HOMA-IR), participants were categorized as insulin sensitive (IS) or insulin resistant (IR). Subsequently, they were divided into four groups: sedentary IS (n = 90), sedentary IR (n = 90), moderately active IS (n = 94), and moderately active IR (n = 94). Moderate physical activity was defined as walking at least two days per week for more than 150 minutes, as determined by physical activity questionnaires. Serum samples were analyzed for circulating inflammatory cytokines (IL-1ß, IL-1RA, IL-6, IL-10, IL-22, MCP-1/CCL2, TNF-α), as well as antioxidant enzyme levels (SOD and catalase). Telomere lengths were measured in the respective DNA samples. Results: Moderately active IR participants exhibited significantly lower SOD activity, while catalase activity did not show significant differences. Moderately active IS participants had higher IL-6 and IL-10 levels compared to sedentary IS participants, with no significant differences observed in the IR counterparts. Telomere length did not significantly differ between the physically active and sedentary groups. Conclusion: This study highlights the potential anti-inflammatory and anti-oxidative stress effects of moderate physical activity in individuals with insulin sensitivity and insulin resistance. However, no significant changes in telomere length were observed, suggesting a complex relationship between physical activity and the aging process. Further research is needed to fully understand the underlying mechanisms and optimize the balance between anti-inflammation and anti-oxidation through exercise and lifestyle adjustments.

15.
Nat Commun ; 14(1): 6239, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803066
16.
Metabolites ; 13(9)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37755253

RESUMEN

Physical activity (PA) is known to have beneficial effects on health, primarily through its antioxidative stress properties. However, the specific metabolic pathways that underlie these effects are not fully understood. This study aimed to investigate the metabolic pathways that are involved in the protective effects of moderate PA in non-obese and healthy individuals. Data on 305 young, non-obese participants were obtained from the Qatar Biobank. The participants were classified as active or sedentary based on their self-reported PA levels. Plasma metabolomics data were collected and analyzed to identify differences in metabolic pathways between the two groups. The results showed that active participants had increased activation of antioxidative, stress-related pathways, including lysoplasmalogen, plasmalogen, phosphatidylcholine, vitamin A, and glutathione. Additionally, there were significant associations between glutathione metabolites and certain clinical traits, including bilirubin, uric acid, hemoglobin, and iron. This study provides new insights into the metabolic pathways that are involved in the protective effects of moderate PA in non-obese and healthy individuals. The findings may have implications for the development of new therapeutic strategies that target these pathways.

17.
Nat Commun ; 14(1): 5807, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726293

RESUMEN

The SN2 nucleophilic substitution reaction is a vital organic transformation used for drug and natural product synthesis. Nucleophiles like cyanide, oxygen, nitrogen, sulfur, or phosphorous replace halogens or sulfonyl esters, forming new bonds. Isocyanides exhibit unique C-centered lone pair σ and π* orbitals, enabling diverse radical and multicomponent reactions. Despite this, their nucleophilic potential in SN2 reactions remains unexplored. We have uncovered that isocyanides act as versatile nucleophiles in SN2 reactions with alkyl halides. This yields highly substituted secondary amides through in situ nitrilium ion hydrolysis introducing an alternative bond break compared to classical amide synthesis. This novel 3-component process accommodates various isocyanide and electrophile structures, functional groups, scalability, late-stage drug modifications, and complex compound synthesis. This reaction greatly expands chemical diversity, nearly doubling the classical amid coupling's chemical space. Notably, the isocyanide nucleophile presents an unconventional Umpolung amide carbanion synthon (R-NHC(-) = O), an alternative to classical amide couplings.

18.
J Org Chem ; 88(14): 9823-9834, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37431831

RESUMEN

Guanine is one out of five endogenous nucleobases and of key interest in drug discovery and chemical biology. Hitherto, the synthesis of guanine derivatives involves lengthy multistep sequential synthesis of low overall diversity, resulting in the quest for innovation. Using a "single-atom skeletal editing" approach, we designed 2-aminoimidazo[2,1-f][1,2,4]triazin-4(3H)-one as a guanine isostere, conserving the biologically important HBA-HBD-HBD (HBA = hydrogen bond acceptor; HBD = hydrogen bond donor) substructure. We realized our design by a simple one-pot two-step method combining the Groebke-Blackburn-Bienaymé reaction (GBB-3CR) and a deprotection reaction to assemble the innovative guanine isosteres in moderate to good yields. Our innovative, diverse, short, and reliable multicomponent reaction synthesis will add to the toolbox of guanine isostere syntheses.


Asunto(s)
Descubrimiento de Drogas , Ciclización
19.
J Med Chem ; 66(14): 9577-9591, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37450644

RESUMEN

In search of a potent small molecular PD-L1 inhibitor, we designed and synthesized a compound based on a 2-hydroxy-4-phenylthiophene-3-carbonitrile moiety. Ligand's performance was tested in vitro and compared side-by-side with a known PD-L1 antagonist with a proven bioactivity BMS1166. Subsequently, we modified both compounds to allow 18F labeling that could be used for PET imaging. Radiolabeling, which is used in drug development and diagnosis, was applied to investigate the properties of those ligands and test them against tissue sections with diverse expression levels of PD-L1. We confirmed biological activity toward hPD-L1 for this inhibitor, comparable with BMS1166, while holding enhanced pharmacological properties.


Asunto(s)
Antígeno B7-H1 , Inhibidores de Puntos de Control Inmunológico
20.
ChemMedChem ; 18(17): e202300279, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37294060

RESUMEN

Aspartate transcarbamoylase (ATCase) plays a key role in the second step of de novo pyrimidine biosynthesis in eukaryotes and has been proposed to be a target to suppress cell proliferation in E. coli, human cells and the malarial parasite. We hypothesized that a library of ATCase inhibitors developed for malarial ATCase (PfATCase) may also contain inhibitors of the tubercular ATCase and provide a similar inhibition of cellular proliferation. Of the 70 compounds screened, 10 showed single-digit micromolar inhibition in an in vitro activity assay and were tested for their effect on M. tuberculosis cell growth in culture. The most promising compound demonstrated a MIC90 of 4 µM. A model of MtbATCase was generated using the experimental coordinates of PfATCase. In silico docking experiments showed this compound can occupy a similar allosteric pocket on MtbATCase to that seen on PfATCase, explaining the observed species selectivity seen for this compound series.


Asunto(s)
Escherichia coli , Mycobacterium tuberculosis , Humanos , Ácido Aspártico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...