Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 62(2): 248-261, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33475132

RESUMEN

The Casparian strip (CS) constitutes a physical diffusion barrier to water and nutrients in plant roots, which is formed by the polar deposition of lignin polymer in the endodermis tissue. The precise pattern of lignin deposition is determined by the scaffolding activity of membrane-bound Casparian Strip domain proteins (CASPs), but little is known of the mechanism(s) directing this process. Here, we demonstrate that Endodermis-specific Receptor-like Kinase 1 (ERK1) and, to a lesser extent, ROP Binding Kinase1 (RBK1) are also involved in regulating CS formation, with the former playing an essential role in lignin deposition as well as in the localization of CASP1. We show that ERK1 is localized to the cytoplasm and nucleus of the endodermis and that together with the circadian clock regulator, Time for Coffee (TIC), forms part of a novel signaling pathway necessary for correct CS organization and suberization of the endodermis, with their single or combined loss of function resulting in altered root microbiome composition. In addition, we found that other mutants displaying defects in suberin deposition at the CS also display altered root exudates and microbiome composition. Thus, our work reveals a complex network of signaling factors operating within the root endodermis that establish both the CS diffusion barrier and influence the microbial composition of the rhizosphere.


Asunto(s)
Arabidopsis/metabolismo , Microbiota , Raíces de Plantas/metabolismo , Rizosfera , Transducción de Señal , Proteínas de Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Raíces de Plantas/microbiología , Transducción de Señal/fisiología
2.
Nat Plants ; 7(1): 34-41, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33398155

RESUMEN

Although plants are able to withstand a range of environmental conditions, spikes in ambient temperature can impact plant fertility causing reductions in seed yield and notable economic losses1,2. Therefore, understanding the precise molecular mechanisms that underpin plant fertility under environmental constraints is critical to safeguarding future food production3. Here, we identified two Argonaute-like proteins whose activities are required to sustain male fertility in maize plants under high temperatures. We found that MALE-ASSOCIATED ARGONAUTE-1 and -2 associate with temperature-induced phased secondary small RNAs in pre-meiotic anthers and are essential to controlling the activity of retrotransposons in male meiocyte initials. Biochemical and structural analyses revealed how male-associated Argonaute activity and its interaction with retrotransposon RNA targets is modulated through the dynamic phosphorylation of a set of highly conserved, surface-located serine residues. Our results demonstrate that an Argonaute-dependent, RNA-guided surveillance mechanism is critical in plants to sustain male fertility under environmentally constrained conditions, by controlling the mutagenic activity of transposons in male germ cells.


Asunto(s)
Elementos Transponibles de ADN/genética , Zea mays/genética , Producción de Cultivos , Elementos Transponibles de ADN/fisiología , Fertilidad , Respuesta al Choque Térmico , Plantas Modificadas Genéticamente , Polen/crecimiento & desarrollo , Polen/fisiología , Proteómica , Zea mays/crecimiento & desarrollo , Zea mays/fisiología
4.
Proc Natl Acad Sci U S A ; 115(39): E9145-E9152, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30201727

RESUMEN

Plants differ from animals in their capability to easily regenerate fertile adult individuals from terminally differentiated cells. This unique developmental plasticity is commonly observed in nature, where many species can reproduce asexually through the ectopic initiation of organogenic or embryogenic developmental programs. While organ-specific epigenetic marks are not passed on during sexual reproduction, the fate of epigenetic marks during asexual reproduction and the implications for clonal progeny remain unclear. Here we report that organ-specific epigenetic imprints in Arabidopsis thaliana can be partially maintained during asexual propagation from somatic cells in which a zygotic program is artificially induced. The altered marks are inherited even over multiple rounds of sexual reproduction, becoming fixed in hybrids and resulting in heritable molecular and physiological phenotypes that depend on the identity of the founder tissue. Consequently, clonal plants display distinct interactions with beneficial and pathogenic microorganisms. Our results demonstrate how novel phenotypic variation in plants can be unlocked through altered inheritance of epigenetic marks upon asexual propagation.


Asunto(s)
Arabidopsis/metabolismo , Epigénesis Genética/fisiología , Técnicas de Embriogénesis Somática de Plantas , Reproducción Asexuada/fisiología , Arabidopsis/citología , Arabidopsis/genética
5.
Sci Rep ; 8(1): 4443, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535386

RESUMEN

Genome editing using CRISPR/Cas9 is considered the best instrument for genome engineering in plants. This methodology is based on the nuclease activity of Cas9 that is guided to specific genome sequences by single guide RNAs (sgRNAs) thus enabling researchers to engineer simple mutations or large chromosomal deletions. Current methodologies for targeted genome editing in plants using CRISPR/Cas9 are however largely inefficient, mostly due to low Cas9 activity, variable sgRNA efficiency and low heritability of genetic lesions. Here, we describe a newly developed strategy to enhance CRISPR/Cas9 efficiency in Arabidopsis thaliana focusing on the design of novel binary vectors (pUbiCAS9-Red and pEciCAS9-Red), the selection of highly efficient sgRNAs, and the use of direct plant regeneration from induced cell cultures. Our work demonstrates that by combining these three independent developments, heritable targeted chromosomal deletions of large gene clusters and intergenic regulatory sequences can be engineered at a high efficiency. Our results demonstrate that this improved CRISPR/Cas9 methodology can provide a fast, efficient and cost-effective tool to engineer targeted heritable chromosomal deletions, which will be instrumental for future high-throughput functional genomics studies in plants.


Asunto(s)
Arabidopsis/genética , Edición Génica/economía , Eliminación de Secuencia , Sistemas CRISPR-Cas , Cromosomas de las Plantas/genética , Familia de Multigenes , Plantas Modificadas Genéticamente/genética
6.
Elife ; 52016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27242129

RESUMEN

Inducible epigenetic changes in eukaryotes are believed to enable rapid adaptation to environmental fluctuations. We have found distinct regions of the Arabidopsis genome that are susceptible to DNA (de)methylation in response to hyperosmotic stress. The stress-induced epigenetic changes are associated with conditionally heritable adaptive phenotypic stress responses. However, these stress responses are primarily transmitted to the next generation through the female lineage due to widespread DNA glycosylase activity in the male germline, and extensively reset in the absence of stress. Using the CNI1/ATL31 locus as an example, we demonstrate that epigenetically targeted sequences function as distantly-acting control elements of antisense long non-coding RNAs, which in turn regulate targeted gene expression in response to stress. Collectively, our findings reveal that plants use a highly dynamic maternal 'short-term stress memory' with which to respond to adverse external conditions. This transient memory relies on the DNA methylation machinery and associated transcriptional changes to extend the phenotypic plasticity accessible to the immediate offspring.


Asunto(s)
Arabidopsis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Patrón de Herencia , Presión Osmótica , Cloruro de Sodio/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mapeo Cromosómico , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Metilación de ADN , Epigénesis Genética , Sitios Genéticos , Células Germinativas , Estrés Fisiológico
7.
Proteomics ; 14(19): 2109-14, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24733746

RESUMEN

The elongation phase of the RNA polymerase II (RNAPII) transcription process is dynamic and regulated. Elongator and SUPPRESSOR OF Ty4 (SPT4)/SPT5 are transcript elongation factors that contribute to the regulation of mRNA synthesis by RNA polymerase II in the chromatin context. Recently, the Elongator complex consisting of six subunits and the SPT4/SPT5 heterodimer were isolated from Arabidopsis. Mutant plants affected in the expression of Elongator or SPT4/SPT5 share various auxin-signaling phenotypes. In line with that observation, auxin-related genes are prominent among the genes differentially expressed in these mutants. Exemplified by Elongator and SPT4/SPT5, we discuss here the role that transcript elongation factors may play in the control of plant growth and development.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , ARN Polimerasa II/genética , Proteínas Represoras/genética , Elongación de la Transcripción Genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Ácidos Indolacéticos , Complejos Multiproteicos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteoma , Proteómica , ARN Polimerasa II/metabolismo , Proteínas Represoras/metabolismo
8.
Nucleic Acids Res ; 42(7): 4332-47, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24497194

RESUMEN

The heterodimeric complex SPT4/SPT5 is a transcript elongation factor (TEF) that directly interacts with RNA polymerase II (RNAPII) to regulate messenger RNA synthesis in the chromatin context. We provide biochemical evidence that in Arabidopsis, SPT4 occurs in a complex with SPT5, demonstrating that the SPT4/SPT5 complex is conserved in plants. Each subunit is encoded by two genes SPT4-1/2 and SPT5-1/2. A mutant affected in the tissue-specifically expressed SPT5-1 is viable, whereas inactivation of the generally expressed SPT5-2 is homozygous lethal. RNAi-mediated downregulation of SPT4 decreases cell proliferation and causes growth reduction and developmental defects. These plants display especially auxin signalling phenotypes. Consistently, auxin-related genes, most strikingly AUX/IAA genes, are downregulated in SPT4-RNAi plants that exhibit an enhanced auxin response. In Arabidopsis nuclei, SPT5 clearly localizes to the transcriptionally active euchromatin, and essentially co-localizes with transcribing RNAPII. Typical for TEFs, SPT5 is found over the entire transcription unit of RNAPII-transcribed genes. In SPT4-RNAi plants, elevated levels of RNAPII and SPT5 are detected within transcribed regions (including those of downregulated genes), indicating transcript elongation defects in these plants. Therefore, SPT4/SPT5 acts as a TEF in Arabidopsis, regulating transcription during the elongation stage with particular impact on the expression of certain auxin-related genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/farmacología , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , Eucromatina/química , Factores de Elongación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...