Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc SPIE Int Soc Opt Eng ; 8948: 89481J, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25076824

RESUMEN

Subunit ε is an intrinsic regulator of the bacterial FoF1-ATP synthase, the ubiquitous membrane-embedded enzyme that utilizes a proton motive force in most organisms to synthesize adenosine triphosphate (ATP). The C-terminal domain of ε can extend into the central cavity formed by the α and ß subunits, as revealed by the recent X-ray structure of the F1 portion of the Escherichia coli enzyme. This insertion blocks the rotation of the central γ subunit and, thereby, prevents wasteful ATP hydrolysis. Here we aim to develop an experimental system that can reveal conditions under which ε inhibits the holoenzyme FoF1-ATP synthase in vitro. Labeling the C-terminal domain of ε and the γ subunit specifically with two different fluorophores for single-molecule Förster resonance energy transfer (smFRET) allowed monitoring of the conformation of ε in the reconstituted enzyme in real time. New mutants were made for future three-color smFRET experiments to unravel the details of regulatory conformational changes in ε.

2.
Biochim Biophys Acta ; 1817(10): 1722-31, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22503832

RESUMEN

Elastic conformational changes of the protein backbone are essential for catalytic activities of enzymes. To follow relative movements within the protein, Förster-type resonance energy transfer (FRET) between two specifically attached fluorophores can be applied. FRET provides a precise ruler between 3 and 8nm with subnanometer resolution. Corresponding submillisecond time resolution is sufficient to identify conformational changes in FRET time trajectories. Analyzing single enzymes circumvents the need for synchronization of various conformations. F(O)F(1)-ATP synthase is a rotary double motor which catalyzes the synthesis of adenosine triphosphate (ATP). A proton-driven 10-stepped rotary F(O) motor in the Escherichia coli enzyme is connected to a 3-stepped F(1) motor, where ATP is synthesized. To operate the double motor with a mismatch of step sizes smoothly, elastic deformations within the rotor parts have been proposed by W. Junge and coworkers. Here we extend a single-molecule FRET approach to observe both rotary motors simultaneously in individual F(O)F(1)-ATP synthases at work. We labeled this enzyme with two fluorophores specifically, that is, on the ε- and c-subunits of the two rotors. Alternating laser excitation was used to select the FRET-labeled enzymes. FRET changes indicated associated transient twisting within the rotors of single enzyme molecules during ATP hydrolysis and ATP synthesis. Supported by Monte Carlo simulations of the FRET experiments, these studies reveal that the rotor twisting is greater than 36° and is largely suppressed in the presence of the rotation inhibitor DCCD. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).


Asunto(s)
Escherichia coli/enzimología , Simulación de Dinámica Molecular , ATPasas de Translocación de Protón/química , Catálisis , Elasticidad , Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo
3.
J Biomed Opt ; 17(1): 011004, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22352638

RESUMEN

Catalytic activities of enzymes are associated with elastic conformational changes of the protein backbone. Förster-type resonance energy transfer, commonly referred to as FRET, is required in order to observe the dynamics of relative movements within the protein. Förster-type resonance energy transfer between two specifically attached fluorophores provides a ruler with subnanometer resolution between 3 and 8 nm, submillisecond time resolution for time trajectories of conformational changes, and single-molecule sensitivity to overcome the need for synchronization of various conformations. F(O)F(1)-ATP synthase is a rotary molecular machine which catalyzes the formation of adenosine triphosphate (ATP). The Escherichia coli enzyme comprises a proton driven 10 stepped rotary F(O) motor connected to a 3-stepped F(1) motor, where ATP is synthesized. This mismatch of step sizes will result in elastic deformations within the rotor parts. We present a new single-molecule FRET approach to observe both rotary motors simultaneously in a single F(O)F(1)-ATP synthase at work. We labeled this enzyme with three fluorophores, specifically at the stator part and at the two rotors. Duty cycle-optimized with alternating laser excitation, referred to as DCO-ALEX, allowed to control enzyme activity and to unravel associated transient twisting within the rotors of a single enzyme during ATP hydrolysis and ATP synthesis. Monte Carlo simulations revealed that the rotor twisting is larger than 36 deg.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , Proteínas de Escherichia coli/química , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón Bacterianas/metabolismo , Carbocianinas/química , Simulación por Computador , Elasticidad , Proteínas de Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/química , Modelos Moleculares , Método de Montecarlo
4.
EMBO J ; 28(18): 2689-96, 2009 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-19644443

RESUMEN

Synthesis of adenosine triphosphate ATP, the 'biological energy currency', is accomplished by F(o)F(1)-ATP synthase. In the plasma membrane of Escherichia coli, proton-driven rotation of a ring of 10 c subunits in the F(o) motor powers catalysis in the F(1) motor. Although F(1) uses 120 degrees stepping during ATP synthesis, models of F(o) predict either an incremental rotation of c subunits in 36 degrees steps or larger step sizes comprising several fast substeps. Using single-molecule fluorescence resonance energy transfer, we provide the first experimental determination of a 36 degrees sequential stepping mode of the c-ring during ATP synthesis.


Asunto(s)
ATPasas de Translocación de Protón/fisiología , Adenosina Trifosfato/metabolismo , Biofisica/métodos , Catálisis , Escherichia coli/enzimología , Transferencia Resonante de Energía de Fluorescencia/métodos , Membrana Dobles de Lípidos/química , Modelos Biológicos , Método de Montecarlo , Mutación , Fotones , Plásmidos/metabolismo , Conformación Proteica , ATPasas de Translocación de Protón/metabolismo , Protones , Rotación
5.
J Biol Chem ; 283(48): 33602-10, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18786919

RESUMEN

The position of the a subunit of the membrane-integral F0 sector of Escherichia coli ATP synthase was investigated by single molecule fluorescence resonance energy transfer studies utilizing a fusion of enhanced green fluorescent protein to the C terminus of the a subunit and fluorescent labels attached to specific positions of the epsilon or gamma subunits. Three fluorescence resonance energy transfer levels were observed during rotation driven by ATP hydrolysis corresponding to the three resting positions of the rotor subunits, gamma or epsilon, relative to the a subunit of the stator. Comparison of these positions of the rotor sites with those previously determined relative to the b subunit dimer indicates the position of a as adjacent to the b dimer on its counterclockwise side when the enzyme is viewed from the cytoplasm. This relationship provides stability to the membrane interface between a and b2, allowing it to withstand the torque imparted by the rotor during ATP synthesis as well as ATP hydrolysis.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Modelos Moleculares , Complejos Multienzimáticos/química , Subunidades de Proteína/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Hidrólisis , Complejos Multienzimáticos/metabolismo , Estructura Cuaternaria de Proteína/fisiología , Subunidades de Proteína/metabolismo
6.
J Mol Biol ; 358(3): 725-40, 2006 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-16563431

RESUMEN

The A1Ao ATP synthase from archaea represents a class of chimeric ATPases/synthases, whose function and general structural design share characteristics both with vacuolar V1Vo ATPases and with F1Fo ATP synthases. The primary sequences of the two large polypeptides A and B, from the catalytic part, are closely related to the eukaryotic V1Vo ATPases. The chimeric nature of the A1Ao ATP synthase from the archaeon Methanosarcina mazei Gö1 was investigated in terms of nucleotide interaction. Here, we demonstrate the ability of the overexpressed A and B subunits to bind ADP and ATP by photoaffinity labeling. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to map the peptide of subunit B involved in nucleotide interaction. Nucleotide affinities in both subunits were determined by fluorescence correlation spectroscopy, indicating a weaker binding of nucleotide analogues to subunit B than to A. In addition, the nucleotide-free crystal structure of subunit B is presented at 1.5 A resolution, providing the first view of the so-called non-catalytic subunit of the A1Ao ATP synthase. Superposition of the A-ATP synthase non-catalytic B subunit and the F-ATP synthase non-catalytic alpha subunit provides new insights into the similarities and differences of these nucleotide-binding ATPase subunits in particular, and into nucleotide binding in general. The arrangement of subunit B within the intact A1Ao ATP synthase is presented.


Asunto(s)
Complejos de ATP Sintetasa/química , Complejos de ATP Sintetasa/metabolismo , Methanosarcina/enzimología , Nucleótidos/química , Nucleótidos/metabolismo , Complejos de ATP Sintetasa/genética , Complejos de ATP Sintetasa/aislamiento & purificación , Secuencia Conservada , Cristalografía por Rayos X , Expresión Génica , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Espectrometría de Fluorescencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Homología Estructural de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...