Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 12(4): 2724-2735, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628177

RESUMEN

Ethanol has been widely used for the extraction of propolis. Due to its certain disadvantages, there has been an ongoing search to find alternative non-ethanolic extraction solvents. This study aimed to compare the phenolics, antioxidant, and antibacterial activity of propolis extracts prepared with 70% ethanol (EWE), propylene glycol (PGE), and L-arginine solution (BE). All extracts were subjected to an in vitro simulated digestion procedure, and the phenolic profile of non-digested and digested samples was determined by using LC-MS/MS. Additionally, the change in total phenolic (TPC), total flavonoid content (TFC), and antioxidant capacities were determined at each digestion phase. TPC and TFC of non-digested propolis extracts had similar values, although BE showed higher antioxidant capacity (p < .05). The amount of TPC reached or transformed at the intestinal stage was higher for BE and PG compared to EWE. BE also provided the highest antioxidant capacity assay in digested samples. The most common phenolics were pinocembrin, pinobanskin, galangin, and CAPE in non-digested extracts. However, their concentration was drastically reduced by digestion, and their recovery (R%) ranged from 0% to 9.38% of the initial amount detected in the non-digested extracts. Chrysin was the most bioaccessible flavonoid in all extracts. Among phenolic acids, the highest R% was determined for trans-cinnamic acid (22.14%) from BE. All extracts showed in vitro inhibitory activity against Escherichia coli and Staphylococcus aureus. This study suggests that an L-arginine solution could be used as an alternative solvent to ethanol and propylene glycol for propolis extraction.

2.
J Pharm Biomed Anal ; 226: 115241, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36641962

RESUMEN

Propolis is mainly composed of plant resins, and its type is named according to the primary plant origin in its composition. Identification of propolis botanical origin is essential for predicting and repeating its pharmacological activity because of the variations in chemical composition. This study aimed to compare chemical composition of black poplar (Populus nigra L.) type-propolis (PR1 and PR2) and Eurasian aspen (P. tremula L.)-type propolis (PR3) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique and to evaluate their biological activity profiles. According to LC-MS/MS results, in addition to marked caffeic acid phenethyl ester content in PR1 and PR2, flavonoid aglycones such as pinocembrin, chrysin, pinobanksin, and galangin were found to be dominant in these samples. On the other hand, PR3 contained relatively high concentrations of phenolic acids such as ferulic acid, p-coumaric acid, and trans-cinnamic acid. The anti-estrogenic activity test showed that PR2 exerted the highest anti-estrogenic activity by inhibiting cell proliferation by 44.6%. All propolis extracts showed anticancer activity, which was justified by decreasing activity on the 3D spheroid size in a concentration-dependent manner. Besides, all extracts showed moderate or potent antimutagenic activity in Salmonella typhimurium TA98 and TA100 strains with and without metabolic activation, respectively. In addition, the Comet assay results revealed that propolis extracts have a geno-protective effect against H2O2-induced DNA damage in CHO-K1 cells at 0.625 and 1.25 µg/mL concentrations. Overall, the result of this study may help in preparing standardized propolis extracts and developing products with defined pharmacological benefits in the food supplements industry.


Asunto(s)
Populus , Própolis , Própolis/farmacología , Própolis/química , Cromatografía Liquida , Populus/química , Mutágenos/toxicidad , Mutágenos/análisis , Peróxido de Hidrógeno , Espectrometría de Masas en Tándem , Flavonoides/química , Daño del ADN
3.
J Funct Foods ; 97: 105225, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35996534

RESUMEN

A broad range of evidence has confirmed that natural products and essential oils might have the potential to suppress COVID-19 infection. Therefore, this study aimed to develop an oral/throat spray formulation for prophylactic use in the oral cavity or help treatment modalities. Based on a reference survey, several essential oils, a cold-pressed oil, and propolis were selected, and cytotoxicity and antiviral activity of each component and the developed spray formulation were examined against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection using Vero E6 cells. Anti-inflammatory, antimicrobial, and analgesic activities as well as mutagenicity and anti-mutagenicity of the formulation were analysed. Forty-three phenolics were identified in both propolis extract and oral/throat spray. The spray with 1:640-fold dilution provided the highest efficacy and the cytopathic effect was delayed for 54 h at this dilution, and the antiviral activity rate was 85.3%. A combination of natural products with essential oils at the right concentrations can be used as a supplement for the prevention of SARS-CoV-2 infection.

4.
Insects ; 13(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35886764

RESUMEN

Honey bees need pollen and nectar sources to survive in nature. Particularly, having young bees in colonies is vital before wintering, and proper feeding is necessary to achieve this. In the present study, the effect of feeding with pollen sources of different protein content on colony performance, wintering ability and in-vitro longevity of colonies that weakened after feeding with pine honey in autumn, or that needed to enter the winter period, was investigated. The experiment was carried out in 48 colonies divided into six groups as follows: control, syrup, mixed pollen, Cistus creticus pollen (Pink rock-rose), Papaver somniferum pollen (Opium poppy), and commercial bee cake groups. In particular, the P. somniferum pollen group was different (p < 0.01) from the other experiment groups with the number of bee frames (3.44), the area with brood (1184.14 cm2) and the wintering ability of 92.19%. The effect of nutritional differences on survival was found to be statistically significant in vitro and this supports the colony results in the natural environment (p < 0.001). The P. somniferum group has the longest longevity with 23 days. Pollen preferences of honey bees were P. somniferum, C. creticus, and mixed pollen, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...