Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 197: 106492, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598959

RESUMEN

The observation of mortality in Mediterranean mussels (Mytilus galloprovincialis) distributed in the Çanakkale Strait in recent years was influential in developing the research question for this study. In this study, the presence of bacteria (Vibrio spp.) and parasites (Marteilia spp. and Haplosporidium spp.) in mussels collected from Kumkale, Kepez, and Umurbey stations in the Çanakkale Strait was investigated seasonally. Microbiological findings, histopathology, oxidative stress enzymes and their gene expressions, lipid peroxidation, lysosomal membrane stability, and changes in haemolymph were examined. In summer samples, both the defence system and the extent of damage were higher in gill tissue. In winter samples, enzyme activities and lipid peroxidation were found to be predominantly higher in digestive gland tissues. Histological examinations and Hemacolor staining revealed the presence of protozoan cysts, and for bacterial examination, molecular analysis performed after culturing revealed the presence of 7 Vibrio species. While the total numbers of heterotrophic bacteria detected in all samples were at acceptable levels, the predominance of Vibrio spp. numbers among the total heterotrophic bacteria detected in almost all samples were noteworthy. The total hemocyte count was calculated as 5.810(4)±0.58 (cells/mm3) in winter and 7.210(4)±1.03 (cells/mm3) in summer. These factors are considered to be possible causes of mussel mortality.


Asunto(s)
Mytilus , Animales , Mytilus/química , Turquía , Estrés Oxidativo , Alimentos Marinos
2.
J Fish Biol ; 97(4): 1154-1164, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32767370

RESUMEN

Turbot, Scophthalmus maximus, is a commercially important demersal flatfish species distributed throughout the Black Sea. Several studies performed locally with a limited number of specimens using both mitochondrial DNA (mtDNA) and microsatellite markers evidenced notable genetic variation among populations. However, comprehensive population genetic studies are required to help management of the species in the Black Sea. In the present study eight microsatellite loci were used to resolve the population structure of 414 turbot samples collected from 12 sites across the Black Sea. Moreover, two mtDNA genes, COI and Cyt-b, were used for taxonomic identification. Microsatellite markers of Smax-04 and B12-I GT14 were excluded from analysis due to scoring issues. Data analysis was performed with the remaining six loci. Loci were highly polymorphic (average of 17.8 alleles per locus), indicating high genetic variability. Locus 3/20CA17, with high null allele frequency (>30%), significantly deviated from HW equilibrium. Pairwise comparison of the FST index showed significant differences between most of the surveyed sampling sites (P < 0.01). Cluster analysis evidenced the presence of three genetic groups among sampling sites. Significant genetic differentiation between Northern (Sea of Azov and Crimea) and Southern (Turkish Black Sea Coast) Black Sea sampling sites were detected. The Mantel test supported an isolation by distance model of population structure. These findings are vital for long-term sustainable management of the species and development of conservation programs. Moreover, generated mtDNA sequences would be useful for the establishment of a database for S. maximus.


Asunto(s)
Peces Planos/clasificación , Peces Planos/genética , Variación Genética , Genética de Población , Animales , Mar Negro , Genes Mitocondriales/genética , Repeticiones de Microsatélite/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA