Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
1.
PLoS One ; 19(9): e0308358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39298410

RESUMEN

Since aircraft icing will decrease the ability of aircraft to generate lift, it is significant to consider the aircraft deicing problem. The paper presents an aircraft deicing method based on the cracking of the ice layer caused by the large deformations of wings. To describe the deformation of wings, the absolute coordinate-based formulation is used. The aircraft with high aspect ratio wings is simplified as a hub-beam system. Such a rigid-flexible system with the fast rotation speed of hub and the large deformation of the beam is modeled using absolute coordinate-based formulation accurately. The maneuver of the rigid body will lead to the large deformation of wings to do the de-icing. Numerical examples are presented to reveal that the maximum tensile strength on the wing surface with sinusoidal control torques with some amplitudes and frequencies is larger than the ice's tensile strength. Hence, the proposed de-icing method based on the aircraft maneuvering is potential.


Asunto(s)
Aeronaves , Resistencia a la Tracción , Vibración , Modelos Teóricos
2.
Ther Adv Drug Saf ; 15: 20420986241274909, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247253

RESUMEN

Background: The use of antineoplastic agents is one of the important triggers of tumor lysis syndrome (TLS), but there is still a lack of comprehensive understanding of antineoplastic agents that may trigger TLS and the TLS risk differences between different antineoplastic agents. Objectives: This study aims to investigate the TLS risk of different antineoplastic agents and provide reference information for clinical practice. Design: Real-world adverse events data in the FDA Adverse Event Reporting System (FAERS) database were used as the basis for the disproportionality analysis. Methods: We reviewed the TLS reports in the FAERS database from 2004 to 2022 to summarize an antineoplastic agent list that was reported to trigger TLS, based on which we conducted disproportionality analysis to assess the TLS risk of each antineoplastic agent. Results: In all, 164 antineoplastic agents were reported to trigger TLS. On the whole, rituximab was the most reported antineoplastic agent in TLS reports, followed by cyclophosphamide, venetoclax, doxorubicin, and etoposide, while tagraxofusp was the antineoplastic agent with the highest adverse drug reaction (ADR) signal strength in signal detection, followed by floxuridine, pentostatin, tebentafusp, and venetoclax. Integrating ADR signal detection results, 129 of 164 antineoplastic agents showed at least one positive ADR signal, and six antineoplastic agents (bevacizumab, carboplatin, cisplatin, fluorouracil, lenvatinib, and paclitaxel) have the highest total number of positive signals. Further classifying the 164 antineoplastic agents into 46 chemical subgroups to conduct ADR signal detection, nitrogen mustard analogs were the most reported antineoplastic agent subclasses, followed by clusters of differentiation 20 inhibitors, and pyrimidine analogs, while clusters of differentiation 22 inhibitors were the antineoplastic agent subclass with the highest ADR signal strength, followed by podophyllotoxin derivatives and actinomycines. Conclusion: Our study showed the TLS risk characteristics of 164 antineoplastic agents by detecting and integrating ADR signals, which may help to optimize clinical practice.


METHODS: Using data from the FDA Adverse Event Reporting System (FAERS) between the years 2004 and 2022, we reviewed TLS reports associated with antineoplastic agent exposure, summarized an antineoplastic agent list that was reported as the potential culprit-drug of TLS, and explored the TLS risk of different antineoplastic agents by disproportionality analysis. RESULTS: Our results showed that 164 antineoplastic agents, involving 64 antineoplastic agent subclasses, were reported as the potential culprit-drug of TLS in the FAERS database, in which 129 antineoplastic agents and 39 antineoplastic agent subclasses were associated with increased TLS risk to varying degrees. CONCLUSIONS: Our research expounded the differences in TLS risks of different antineoplastic agents, which helps us pay attention to the occurrence of TLS and give timely treatment when prescribing high-TLS-risk antineoplastic agents to patients.


Antineoplastic agent and the risk of tumor lysis syndrome Background: Antineoplastic agents are medicines that help treat cancer. It is one of the most outstanding achievements of human beings in medicine, which plays an increasingly important role in improving human health and prolonging the life span of cancer patients. However, adverse reactions (ADRs) associated with the use of antineoplastic agents may also cause unexpected harm to patients. Therefore, it is essential to have a comprehensive understanding of antineoplastic-related ADRs to ensure the lives of cancer patients. Tumor lysis syndrome (TLS) is a potentially life-threatening ADR that may occur during antineoplastic agent treatment. However, there is still a lack of comprehensive understanding of antineoplastic agents that may trigger TLS and their risk differences. This study aimed to comprehensively investigate the TLS risk of antineoplastic agents from the pharmacovigilance perspective, providing reference information for patients, health professionals, regulators, and others concerned with antineoplastic agent safety.

4.
IEEE Trans Image Process ; 33: 4459-4474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39106137

RESUMEN

The unsupervised domain adaptation (UDA) based cross-scene remote sensing image classification has recently become an appealing research topic, since it is a valid solution to unsupervised scene classification by exploiting well-labeled data from another scene. Despite its good performance in reducing domain shifts, UDA in multisource data scenarios is hindered by several critical challenges. The first one is the heterogeneity inherent in multisource data complicates domain alignment. The second challenge is the incomplete representation of feature distribution caused by the neglect of the contribution from global information. The third challenge is the inaccuracies in alignment due to errors in establishing target domain conditional distributions. Since UDA does not guarantee the complete consistency of the distribution of the two domains, networks using simple classifiers are still affected by domain shifts, resulting in poor performance. In this paper, we propose a graph embedding interclass relation-aware adaptive network (GeIraA-Net) for unsupervised classification of multi-source remote sensing data, which facilitates knowledge transfer at the class level for two domains by leveraging aligned features to perceive inter-class relation. More specifically, a graph-based progressive hierarchical feature extraction network is constructed, capable of capturing both local and global features of multisource data, thereby consolidating comprehensive domain information within a unified feature space. To deal with the imprecise alignment of data distribution, a joint de-scrambling alignment strategy is designed to utilize the features obtained by a three-step pseudo-label generation module for more delicate domain calibration. Moreover, an adaptive inter-class topology based classifier is constructed to further improve the classification accuracy by making the classifier domain adaptive at the category level. The experimental results show that GeIraA-Net has significant advantages over the current state-of-the-art cross-scene classification methods.

5.
Front Cell Neurosci ; 18: 1456775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193428

RESUMEN

Cerebral aneurysm (CA) is a significant health concern that results from pathological dilations of blood vessels in the brain and can lead to severe and potentially life-threatening conditions. While the pathogenesis of CA is complex, emerging studies suggest that endothelial progenitor cells (EPCs) play a crucial role. In this paper, we conducted a comprehensive literature review to investigate the potential role of EPCs in the pathogenesis and treatment of CA. Current research indicates that a decreased count and dysfunction of EPCs disrupt the balance between endothelial dysfunction and repair, thus increasing the risk of CA formation. Reversing these EPCs abnormalities may reduce the progression of vascular degeneration after aneurysm induction, indicating EPCs as a promising target for developing new therapeutic strategies to facilitate CA repair. This has motivated researchers to develop novel treatment options, including drug applications, endovascular-combined and tissue engineering therapies. Although preclinical studies have shown promising results, there is still a considerable way to go before clinical translation and eventual benefits for patients. Nonetheless, these findings offer hope for improving the treatment and management of this condition.

6.
BMC Musculoskelet Disord ; 25(1): 639, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39134982

RESUMEN

OBJECTIVE: The purpose of this study was to investigate the long-term consequences on the cervical spine after Anterior transcorporeal percutaneous endoscopy cervical discectomy (ATc-PECD) from the biomechanical standpoint. METHODS: A three-dimensional model of the normal cervical spine C2-T1 was established using finite element method. Subsequently, a disc degeneration model and degeneration with surgery model were constructed on the basis of the normal model. The same loading conditions were applied to simulate flexion, extension, lateral bending and axial rotation of the cervical spine. We calculated the cervical range of motion (ROM), intradiscal pressure, and intravertebral body pressure under different motions for observing changes in cervical spine biomechanics after surgery. At the same time, we combined the results of a long-term follow-up of the ATc-PECD, and used imaging methods to measure vertebral and disc height and cervical mobility, the Japanese Orthopaedic Association (JOA) score and visual analog scale (VAS) score were used to assess pain relief and neurological functional recovery. RESULTS: The long-term follow-up results revealed that preoperative JOA score, neck VAS score, hand VAS score, IDH, VBH, and ROM for patients were 9.49 ± 2.16, 6.34 ± 1.68, 5.14 ± 1.48, 5.95 ± 0.22 mm, 15.41 ± 1.68 mm, and 52.46 ± 9.36° respectively. It changed to 15.71 ± 1.13 (P < 0.05), 1.02 ± 0.82 (P < 0.05), 0.77 ± 0.76 (P < 0.05), 4.73 ± 0.26 mm (P < 0.05), 13.67 ± 1.48 mm (P < 0.05), and 59.26 ± 6.72° (P < 0.05), respectively, at 6 years postoperatively. Finite element analysis showed that after establishing the cervical spondylosis model, the overall motion range for flexion, extension, lateral bending, and rotation decreased by 3.298°, 0.753°, 3.852°, and 1.131° respectively. Conversely, after establishing the bone tunnel model, the motion range for these actions increased by 0.843°, 0.65°, 0.278°, and 0.488° respectively, consistent with the follow-up results. Moreover, analysis of segmental motion changes revealed that the increased cervical spine mobility was primarily contributed by the surgical model segments. Additionally, the finite element model demonstrated that bone tunneling could lead to increased stress within the vertebral bodies and intervertebral discs of the surgical segments. CONCLUSIONS: Long-term follow-up studies have shown that ATc-PECD has good clinical efficacy and that ATc-PECD can be used as a complementary method for CDH treatment. The FEM demonstrated that ATc-PECD can lead to increased internal stresses in the vertebral body and intervertebral discs of the operated segments, which is directly related to cervical spine degeneration after ATc-PECD.


Asunto(s)
Vértebras Cervicales , Discectomía Percutánea , Endoscopía , Análisis de Elementos Finitos , Desplazamiento del Disco Intervertebral , Rango del Movimiento Articular , Humanos , Vértebras Cervicales/cirugía , Vértebras Cervicales/diagnóstico por imagen , Desplazamiento del Disco Intervertebral/cirugía , Desplazamiento del Disco Intervertebral/fisiopatología , Desplazamiento del Disco Intervertebral/diagnóstico por imagen , Estudios de Seguimiento , Discectomía Percutánea/métodos , Endoscopía/métodos , Masculino , Persona de Mediana Edad , Adulto , Femenino , Descompresión Quirúrgica/métodos , Resultado del Tratamiento , Fenómenos Biomecánicos , Degeneración del Disco Intervertebral/cirugía , Degeneración del Disco Intervertebral/diagnóstico por imagen
7.
J Exp Bot ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126383

RESUMEN

Unlike early land plants, flowering plants have evolved a pollen tube that transport a pair of non-motile sperm cells to the female gametophyte. This process, known as siphonogamy, was first observed in gymnosperms and later become prevalent in angiosperms. However, the precise molecular mechanisms underlying the male-female interactions remain enigmatic. From the pollen grain's landing on the stigma to gametes fusion, the male part needs to pass various tests: How does the stigma distinguish between compatible and incompatible pollen? What mechanisms guide pollen tube towards the ovule? What factors trigger pollen tube rupture? How is polyspermy prevented? And how does the sperm cell ultimately reach the egg? Successful male-female communications is essential for surmounting these challenges, with cysteine-rich peptides (CRPs) playing a pivotal role in these dialogues. In this review, we summarize the characteristics of four distinct classes of CRPs and then we systematically review the recent progresses of the role of CRPs in four crucial stages of pollination and fertilization. Finally, we conclude by considering the potential applications of this knowledge in crop breeding, and suggesting avenues for future research.

8.
Expert Opin Drug Saf ; : 1-10, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39175438

RESUMEN

BACKGROUND: The comprehensive quantitative and comparative risk data of drug-induced erectile dysfunction (ED) are still lacking, and this study aims to supplement this information. RESEARCH DESIGN AND METHODS: We reviewed all the ED reports in the FDA Adverse Event Reporting System (FAERS) database from 2004 to 2023 and summarized a potential ED culprit-drug list and its corresponding reporting frequency. The reporting odds ratio (ROR) method was used to conduct disproportionality analysis. RESULTS: A total of 20,098 ED reports were retrieved from the FAERS database, which recorded 734 different ED culprit-drugs, involving 74 drug classes. Finasteride was the drug with the highest reporting frequency, and urologicals was the drug class with the highest reporting frequency. In disproportionality analysis, 209 drugs with positive signals showed a close relationship with ED occurrence, among which finasteride was the drug with the highest signal strength. Among 209 drugs with positive signals, 27 were compound preparations, and the risk level of compound preparations was usually higher than their single active ingredient. CONCLUSIONS: Our study integrated quantitative and comparative ED risk data of 734 drugs by using the FAERS database, which can provide reference information for regulators, medical personnel, and others involved in drug management and use.

9.
J Transl Med ; 22(1): 782, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175012

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide. Osteocalcin plays an important role in energy metabolism. In this study, we investigated the mechanism of action of chemically synthesized osteocalcin (csOCN) in ameliorating NAFLD. We demonstrated for the first time that csOCN attenuates lipid accumulation in the liver and hepatocytes by modulating CD36 protein expression. In addition, we found that the expression of p-AMPK, FOXO1 and BCL6 decreased and the expression of CD36 increased after OA/PA induction compared to the control group, and these effects were reversed by the addition of csOCN. In contrast, the therapeutic effect of csOCN was inhibited by the addition of AMPK inhibitors and BCL6 inhibitors. This finding suggested that csOCN regulates CD36 expression via the AMPK-FOXO1/BCL6 axis. In NAFLD mice, oral administration of csOCN also activated the AMPK pathway and reduced CD36 expression. Molecular docking revealed that osteocalcin has a docking site with CD36. Compared to oleic acid and palmitic acid, osteocalcin bound more strongly to CD36. Laser confocal microscopy results showed that osteocalcin colocalized with CD36 at the cell membrane. In conclusion, we demonstrated the regulatory role of csOCN in fatty acid uptake pathways for the first time; it regulates CD36 expression via the AMPK-FOXO1/BCL6 axis to reduce fatty acid uptake, and it affects fatty acid transport by may directly binding to CD36. There are indications that csOCN has potential as a CD36-targeted drug for the treatment of NAFLD.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antígenos CD36 , Proteína Forkhead Box O1 , Enfermedad del Hígado Graso no Alcohólico , Osteocalcina , Proteínas Proto-Oncogénicas c-bcl-6 , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Antígenos CD36/metabolismo , Proteína Forkhead Box O1/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Osteocalcina/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Transducción de Señal/efectos de los fármacos
10.
New Phytol ; 243(5): 1681-1697, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39014537

RESUMEN

Vascular bundles transport water and photosynthate to all organs, and increased bundle number contributes to crop lodging resistance. However, the regulation of vascular bundle formation is poorly understood in the Arabidopsis stem. We report a novel semi-dominant mutant with high vascular activity, hva-d, showing increased vascular bundle number and enhanced cambium proliferation in the stem. The activation of a C2H2 zinc finger transcription factor, AT5G27880/HVA, is responsible for the hva-d phenotype. Genetic, biochemical, and fluorescent microscopic analyses were used to dissect the functions of HVA. HVA functions as a repressor and interacts with TOPLESS via the conserved Ethylene-responsive element binding factor-associated Amphiphilic Repression motif. In contrast to the HVA activation line, knockout of HVA function with a CRISPR-Cas9 approach or expression of HVA fused with an activation domain VP16 (HVA-VP16) resulted in fewer vascular bundles. Further, HVA directly regulates the expression of the auxin transport efflux facilitator PIN1, as a result affecting auxin accumulation. Genetics analysis demonstrated that PIN1 is epistatic to HVA in controlling bundle number. This research identifies HVA as a positive regulator of vascular initiation through negatively modulating auxin transport and sheds new light on the mechanism of bundle formation in the stem.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Tallos de la Planta , Haz Vascular de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Transporte Biológico , Haz Vascular de Plantas/metabolismo , Tallos de la Planta/metabolismo , Mutación/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Fenotipo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Unión Proteica , Cámbium/metabolismo , Cámbium/genética , Epistasis Genética
11.
Cancer Cell Int ; 24(1): 263, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054484

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) is a type of breast cancer that is negative for oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, is highly malignant and aggressive, lacks of corresponding targeted therapy, and has a relatively poor prognosis. Therefore, understanding the mechanism of TNBC development and formulating effective treatment strategies for inducing cell death are still urgent tasks in the treatment of TNBC. Research has shown that uncarboxylated osteocalcin can promote the proliferation of prostate cancer, lung adenocarcinoma and TNBC cells, but the mechanism by which GluOC affects TNBC growth and metastasis needs further study. METHODS: MDA-MB-231 breast cancer cells were used for in vitro cell analysis. Key target molecules or pathways were identified by RNA sequencing, and migration ability was detected by scratch assays, Transwell assays, cell adhesion assays and western blot analysis. Fluorescence staining, colony detection, qRT‒PCR and flow cytometry were used to detect apoptosis, oxidative stress, the cell cycle and the stemness of cancer cells, and a xenotransplantation model in BALB/C nude mice was used for in vivo analysis. RESULTS: This study demonstrated that GluOC facilitates the migration of MDA-MB-231 breast cancer cells through the ROCK1/MYPT1/MLC2 signalling pathway and promotes the proliferation of TNBC cells via the ROCK1/JAK2/PIK3CA/AKT signalling pathway. Experiments in nude mice demonstrated that GluOC promoted tumour cell proliferation and metastasis in tumour-bearing mice, which further clarified the molecular mechanism of TNBC growth and invasion. CONCLUSION: Our findings highlight the importance of GluOC in driving TNBC progression and its association with poor patient outcomes. This study clarifies the functional effects of GluOC on TNBC growth, providing insight into the molecular basis of TNBC and potentially providing new ideas for developing targeted therapies to improve patient outcomes.

12.
Nanotechnology ; 35(41)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39019050

RESUMEN

Metal-organic frameworks (MOFs) are believed to be promising precursors for constructing novel and efficient catalysts for glucose sensing. Herein, HKUST-1 precursors are first fabricated using a one-pot hydrothermal approach, and then HKUST-1 is converted into porous Cu2S/CuO octahedrons through conformal sulfidation with the help of OH-ions. The as-obtained Cu2S/CuO composite can provide rich electrochemical active sites and promoted electric transfer kinetics. Benefiting from these combined merits, the as-fabricated Cu2S/CuO composite is confirmed to be a high-performance catalyst, with high sensitivities of 8269.45 and 4140.82µA mM-1cm-2in the corresponding ranges of 0.05 ∼ 0.6 mM and 0.6 ∼ 1.2 mM, respectively. Moreover, the as-prepared electrode materials possess good anti-interference ability, reproducibility and long-term stability. This work opens up new avenues for the design and preparation of transition metal sulfide composites.

13.
Cancer Gene Ther ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048663

RESUMEN

The incidence of hepatocellular carcinoma (HCC) has continued to increase annually worldwide, and HCC has become a common cause of cancer-related death. Despite great progress in understanding the molecular mechanisms underlying HCC development, the treatment of HCC remains a considerable challenge. Thus, the survival and prognosis of HCC patients remain extremely poor. In recent years, the role of ion channels in the pathogenesis of diseases has become a hot topic. In normal liver tissue, ion channels and transporters maintain water and electrolyte balance and acid‒base homeostasis. However, dysfunction of these ion channels and transporters can lead to the development and progression of HCC, and thus these ion channels and transporters are expected to become new therapeutic targets. In this review, ion channels and transporters associated with HCC are reviewed, and potential targets for new and effective therapies are proposed.

14.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38979190

RESUMEN

The overexpression of proto-oncogene Bcl3 is observed in various cancers. Bcl3 is extensively phosphorylated and associates with homodimers of NF-κB p50 and p52 to regulate transcription. Through cellular and biochemical assays, we observed that phospho-mimetic Glu substitution at Ser366 in addition to previously studied Ser33, 114 and 446 is necessary to switch Bcl3 from an IκB-like inhibitor to a transcriptional activator. To study interactive features of p52 and Bcl3, and phosphorylation- mediated changes in Bcl3 that regulate DNA-binding by p52, we performed HDX-MS of both Bcl3 and p52 within various complexes. Nature of interactions within Bcl3:(p52:p52) complex in presence and absence of DNA, differential flexibility of Bcl3, and allosteric changes in Bcl3 upon phospho-modifications revealed why a facile accommodation of DNA requires phosphorylation. The inhibitory nature of unphosphorylated Bcl3 on DNA binding by p52:p52 also relieved by a C-terminal deletion of Bcl3. Overall, this study revealed mechanistic bases of how Bcl3 phosphorylation regulates transcriptional potential of NF-κB and intricate cell physiology, a dysregulation of which can lead to cancers.

15.
Front Microbiol ; 15: 1399525, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035442

RESUMEN

Fluoride-resistant Streptococcus mutans (S. mutans) might affect the ecological balance of biofilms in the presence of fluoride. We used a S. mutans and Candida albicans (C. albicans) cross-kingdom biofilm model to investigate whether fluoride-resistant S. mutans in biofilms would support C. albicans growth under fluoride stress and attenuate the in vitro anti-caries effect of fluorine. The impact of fluoride-resistant S. mutans on formation of cross-kingdom biofilms by S. mutans and C. albicans in the presence of fluoride was investigated in vitro using the crystal violet staining assay. Biofilm constitution was determined using colony-forming unit (CFU) counts and fluorescent in situ hybridization (FISH). Extracellular polysaccharide (EPS) generation in biofilms was determined by EPS/bacterial dying and water-insoluble polysaccharide detection. Acid production and demineralization were monitored using pH, lactic acid content, and transversal microradiography (TMR). The gene expression of microorganisms in the cross-kingdom biofilm was measured using qRT-PCR. Our results showed that both C. albicans and fluoride-resistant S. mutans grew vigorously, forming robust cross-kingdom biofilms, even in the presence of sodium fluoride (NaF). Moreover, fluoride-resistant S. mutans-containing cross-kingdom biofilms had considerable cariogenic potential for EPS synthesis, acid production, and demineralization ability in the presence of NaF than fluoride-sensitive S. mutans-containing biofilms. Furthermore, the gene expression of microorganisms in the two cross-kingdom biofilms changed dissimilarly in the presence of NaF. In summary, fluoride-resistant S. mutans in cross-kingdom biofilms supported C. albicans growth under fluoride and might attenuate the anti-caries potential of fluorine by maintaining robust cross-kingdom biofilm formation and cariogenic virulence expression in vitro in the presence of NaF.

16.
BMJ Open ; 14(7): e078461, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019626

RESUMEN

OBJECTIVES: To assess the impact of a patient-based self-assessed fatigue intervention aimed at promoting early postoperative ambulation. DESIGN: Prospective randomised controlled trial. SETTING: Single-centre, conducted at the Obstetrics and Gynaecology Department of the Xiangyang Central Hospital, China. PARTICIPANTS: Eligible were adult patients undergoing elective gynaecologic oncologic surgery. INTERVENTIONS: The intervention group utilised a modified Borg Rating of Perceived Experience (RPE) scale for self-assessment of fatigue levels. The control group followed fixed-activity distance guidelines postoperatively. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome was the self-reported the time to first flatus postoperatively. Secondary outcomes encompassed the time to first defecation, incidence of moderate-to-severe abdominal distention, ileus, postambulation adverse events (nausea, vomiting and dizziness), patient satisfaction with early ambulation instructions, compliance with early ambulation and average hospital costs and length of stay. RESULTS: Between June 2021 and October 2022, 552 patients were enrolled. The self-assessed fatigue intervention group demonstrated non-inferior the time to first flatus compared with the fixed-activity distance assessment group (25.59±14.59 hours vs 26.10±14.19 hours, pnon-inferiority<0.001). Compliance with activity was higher in the intervention group (49.40% vs 36.02%, p<0.001), although it did not reach 50%. The intervention group also exhibited significantly higher mean hospital costs, length of stay and incidence of moderate-to-severe abdominal distention (p<0.001). CONCLUSIONS: The self-assessed fatigue intervention for early postoperative ambulation in gynaecologic oncology patients shows promise as an effective strategy; however, compliance is suboptimal. An intervention based on mandatory, yet reasonable, fixed-activity distance may represent the most viable current approach. Further research is warranted to confirm these findings. TRIAL REGISTRATION NUMBER: CTR2100046035.


Asunto(s)
Ambulación Precoz , Fatiga , Neoplasias de los Genitales Femeninos , Procedimientos Quirúrgicos Ginecológicos , Complicaciones Posoperatorias , Humanos , Femenino , Fatiga/etiología , Persona de Mediana Edad , Neoplasias de los Genitales Femeninos/cirugía , Estudios Prospectivos , Adulto , Anciano , Satisfacción del Paciente , China , Autoevaluación (Psicología)
17.
Artículo en Inglés | MEDLINE | ID: mdl-39042547

RESUMEN

Most of the existing fusion algorithms are not robust to unregistered input images. Even after image registration, nonlinear nonregistration may persist in the local areas of the images, leading to poor quality in the fused image. So, as to tackle these challenges, a progressive remote sensing image registration and fusion network is proposed in this article, and named PRF-Net, which is particularly useful when two images are from different platforms. First, a registration network is designed to register the input image patches, which includes a global spatial transform network (GSTN) and a local spatial warp network (LSWN). The GSTN is primarily used for coarse registration, applying rigid transformation to globally align the input images. After coarse registration, the preliminarily registered moving image is input into the LSWN for local fine-tuning to maximize correlation between the input image patches. Subsequently, the fine registered images are degraded and input into the fusion network to generate the fused image. To maintain sufficient spectral and spatial information of the fused image, a multiscale feature extraction (MSFE) block with a highly interpretable spatial details attention (SDA) block is designed, which can enhance the ability of fusion network to extract and preserve spatial details and spectral information. Three groups of experiments conducted on four types of remote sensing images give evidence of that the proposed PRF-Net exhibits excellent performance in both reduced and full resolutions, showcasing its outstanding registration and fusion quality.

18.
Environ Res ; 257: 119386, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852833

RESUMEN

Nanotechnology could improve the effectiveness and functionality of pesticides, but the size effect of nanopesticides on formulation performance and the related mechanisms have yet to be explored, hindering the precise design and development of efficient and eco-friendly nanopesticides. In this study, two non-carrier-coated imidacloprid formulations (Nano-IMI and Micro-IMI) with identical composition but varying particle size characteristics were constructed to exclude other interferences in the size effect investigation. Nano-IMI and Micro-IMI both exhibited rod-like structures. Specifically, Nano-IMI had average vertical and horizontal axis sizes of 239.5 nm and 561.8 nm, while Micro-IMI exhibited 6.7 µm and 22.1 µm, respectively. Compared to Micro-IMI, the small size effect of Nano-IMI affected the arrangement of interfacial molecules, reduced surface tension and contact angle, thereby improving the stability, dispersibility, foliar wettability, deposition and retention of the nano-system. Nano-IMI exhibited 1.3 times higher toxicity to Aphis gossypii Glover compared to Micro-IMI, attributed to its enhanced foliar utilization efficiency. Importantly, the Nano-IMI did not intensify the toxicity to non-target organism Apis mellifera L. This study systematically elucidates the influence of size effect on key indicators related to the effectiveness and safety, providing a theoretical basis for efficient and safe application of nanopesticides and critical insights into sustainable agriculture and environmental development.


Asunto(s)
Imidazoles , Insecticidas , Nanopartículas , Neonicotinoides , Nitrocompuestos , Tamaño de la Partícula , Neonicotinoides/química , Nanopartículas/química , Nanopartículas/toxicidad , Imidazoles/toxicidad , Imidazoles/química , Insecticidas/toxicidad , Insecticidas/química , Animales , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos
19.
Food Funct ; 15(13): 6988-7002, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38855818

RESUMEN

A high-fat diet (HFD) is a major risk factor for cardiovascular disease. However, the specific effects of a HFD on vascular inflammation and the protective role of vitexin, a bioactive compound derived from food, require further research. This study investigated the protective effects of vitexin intervention against HFD-induced vascular inflammation and its underlying mechanism. The results demonstrated that vitexin intervention significantly reduced body weight, serum total cholesterol, and low-density lipoprotein cholesterol levels in HFD-fed mice. Vitexin also improved vascular pathological changes and the inflammatory status in the mice. Furthermore, vitexin intervention reduced serum TMAO levels in HFD-fed mice by altering the gut microbiota composition. The HFD significantly increased N6-methyladenosine (m6A) levels in aorta tissues, while vitexin intervention reversed this abnormal m6A level. Through metabolite affinity responsive target fluorescence quenching and molecular docking assays, it was found that vitexin could directly bind to fat mass and obesity-associated protein (FTO), potentially promoting m6A demethylation. The dose-response relationship between TMAO and inflammation/m6A was further validated in HUVEC cells and in vivo mouse experiments. Specifically, TMAO increased m6A levels and inflammation, while vitexin inhibited TMAO-mediated m6A modification, exhibiting anti-inflammatory effects. In conclusion, this study demonstrates the protective role of vitexin against HFD-induced vascular inflammation by inhibiting TMAO-mediated RNA m6A modification, laying the foundation for the development of functional foods.


Asunto(s)
Apigenina , Dieta Alta en Grasa , Metilaminas , Ratones Endogámicos C57BL , Animales , Ratones , Apigenina/farmacología , Masculino , Dieta Alta en Grasa/efectos adversos , Humanos , Inflamación/tratamiento farmacológico , Células Endoteliales de la Vena Umbilical Humana , ARN/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Metilación de ARN
20.
Artículo en Inglés | MEDLINE | ID: mdl-38900617

RESUMEN

For hyperspectral image (HSI) and multispectral image (MSI) fusion, it is often overlooked that multisource images acquired under different imaging conditions are difficult to be perfectly registered. Although some works attempt to fuse unregistered images, two thorny challenges remain. One is that registration and fusion are usually modeled as two independent tasks, and there is no yet a unified physical model to tightly couple them. Another is that deep learning (DL)-based methods may lack sufficient interpretability and generalization. In response to the above challenges, we propose an unregistered HSI fusion framework energized by a unified model of registration and fusion. First, a novel registration-fusion consistency physical perception model (RFCM) is designed, which uniformly models the image registration and fusion problem to greatly reduce the sensitivity of fusion performance to registration accuracy. Then, an HSI fusion framework (MoE-PNP) is proposed to learn the knowledge reasoning process for solving RFCM. Each basic module of MoE-PNP one-to-one corresponds to the operation in the optimization algorithm of RFCM, which can ensure clear interpretability of the network. Moreover, MoE-PNP captures the general fusion principle for different unregistered images and therefore has good generalization. Extensive experiments demonstrate that MoE-PNP achieves state-of-the-art performance for unregistered HSI and MSI fusion. The code is available at https://github.com/Jiahuiqu/MoE-PNP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA