Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 13(4): e0145622, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35924849

RESUMEN

Macrophage surface receptors are critical for pathogen defense, as they are the gatekeepers for pathogen entry and sensing, which trigger robust immune responses. TREM2 (triggering receptor expressed on myeloid cells 2) is a transmembrane surface receptor that mediates anti-inflammatory immune signaling. A recent study showed that TREM2 is a receptor for mycolic acids in the mycobacterial cell wall and inhibits macrophage activation. However, the underlying functional mechanism of how TREM2 regulates the macrophage antimycobacterial response remains unclear. Here, we show that Mycobacterium tuberculosis, the causative agent for tuberculosis, specifically binds to human TREM2 to disable the macrophage antibacterial response. Live but not killed mycobacteria specifically trigger the upregulation of TREM2 during macrophage infection through a mechanism dependent on STING (the stimulator of interferon genes). TREM2 facilitated uptake of M. tuberculosis into macrophages and is responsible for blocking the production of tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), and reactive oxygen species (ROS), while enhancing the production of interferon-ß (IFN-ß) and IL-10. TREM2-mediated blockade of ROS production promoted the survival of M. tuberculosis within infected macrophages. Consistent with this, genetic deletion or antibody-mediated neutralization of TREM2 reduced the intracellular survival of M. tuberculosis through enhanced production of ROS. Importantly, inhibition of type I IFN signaling in TREM2-overexpressing macrophages restored the ability of these cells to produce inflammatory cytokines and ROS, resulting in normal levels of intracellular bacteria killing. Collectively, our study identifies TREM2 as an attractive host receptor for host-directed antimycobacterial therapeutics. IMPORTANCE Mycobacterium tuberculosis is one of the most ancient bacterial pathogens and remains the leading cause of death from a single bacterial agent. The success of M. tuberculosis relies greatly on its ability to parasitize and disable its host macrophages. Previous studies have found that M. tuberculosis uses its unique cell wall lipids to manipulate the immune response by binding to specific surface receptors on macrophages. Our study reveals that M. tuberculosis binds to TREM2, an immunomodulatory receptor expressed on macrophages, to facilitate a "silent" mode of entry. Increased levels of TREM2 triggered by intracellular sensing of M. tuberculosis promoted the intracellular survival of M. tuberculosis through type I IFN-driven inhibition of reactive oxygen species (ROS) and proinflammatory cytokine production. Importantly, deletion of TREM2 reversed the effects of "silent" entry and resulted in increased production of inflammatory cytokines, generation of ROS, and cell death. As such, antibody-mediated or pharmacological targeting of TREM2 could be a promising strategy for novel treatments against M. tuberculosis infection.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Citocinas/metabolismo , Humanos , Evasión Inmune , Macrófagos/microbiología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Inmunológicos/metabolismo , Tuberculosis/microbiología
2.
mBio ; 13(3): e0383621, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35471080

RESUMEN

Mycobacterium tuberculosis encodes ~200 transcription factors that modulate gene expression under different microenvironments in the host. Even though high-throughput chromatin immunoprecipitation sequencing and transcriptome sequencing (RNA-seq) studies have identified the regulatory network for ~80% of transcription factors, many transcription factors remain uncharacterized. EmbR is one such transcription factor whose in vivo regulon and biological function are yet to be elucidated. Previous in vitro studies suggested that phosphorylation of EmbR by PknH upregulates the embCAB operon. Using a gene replacement mutant of embR, we investigated its role in modulating cellular morphology, antibiotic resistance, and survival in the host. Contrary to the prevailing hypothesis, under normal growth conditions, EmbR is neither phosphorylated nor impacted by ethambutol resistance through the regulation of the embCAB operon. The embR deletion mutant displayed attenuated M. tuberculosis survival in vivo. RNA-seq analysis suggested that EmbR regulates operons involved in the secretion pathway, lipid metabolism, virulence, and hypoxia, including well-known hypoxia-inducible genes devS and hspX. Lipidome analysis revealed that EmbR modulates levels of all lysophospholipids, several phospholipids, and M. tuberculosis-specific lipids, which is more pronounced under hypoxic conditions. We found that the EmbR mutant is hypersusceptible to hypoxic stress, and RNA sequencing performed under hypoxic conditions indicated that EmbR majorly regulates genes involved in response to acidic pH, hypoxia, and fatty acid metabolism. We observed condition-specific phosphorylation of EmbR, which contributes to EmbR-mediated transcription of several essential genes, ensuring enhanced survival. Collectively, the study establishes EmbR as a key modulator of hypoxic response that facilitates mycobacterial survival in the host. IMPORTANCE Mycobacterium tuberculosis modulates its transcriptional machinery in response to dynamic microenvironments encountered within the host. In this study, we identified that EmbR, a transcription factor, plays important roles in modulating cellular morphology, antibiotic resistance, and survival in the host. We found that EmbR undergoes condition-specific phosphorylation for its activation. Together, the study establishes a key role of EmbR as a transcriptional activator of genes belonging to multiple pathways, viz., virulence, secretion, or polyketide synthesis, that aid in mycobacterial survival during hypoxia and within the host.


Asunto(s)
Proteínas Bacterianas , Mycobacterium tuberculosis , Factores de Transcripción , Factores de Virulencia , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hipoxia , Mycobacterium tuberculosis/metabolismo , Factores de Transcripción/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
3.
Front Immunol ; 12: 742370, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745115

RESUMEN

Tuberculosis is a deadly, contagious respiratory disease that is caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb). Mtb is adept at manipulating and evading host immunity by hijacking alveolar macrophages, the first line of defense against inhaled pathogens, by regulating the mode and timing of host cell death. It is established that Mtb infection actively blocks apoptosis and instead induces necrotic-like modes of cell death to promote disease progression. This survival strategy shields the bacteria from destruction by the immune system and antibiotics while allowing for the spread of bacteria at opportunistic times. As such, it is critical to understand how Mtb interacts with host macrophages to manipulate the mode of cell death. Herein, we demonstrate that Mtb infection triggers a time-dependent reduction in the expression of focal adhesion kinase (FAK) in human macrophages. Using pharmacological perturbations, we show that inhibition of FAK (FAKi) triggers an increase in a necrotic form of cell death during Mtb infection. In contrast, genetic overexpression of FAK (FAK+) completely blocked macrophage cell death during Mtb infection. Using specific inhibitors of necrotic cell death, we show that FAK-mediated cell death during Mtb infection occurs in a RIPK1-depedent, and to a lesser extent, RIPK3-MLKL-dependent mechanism. Consistent with these findings, FAKi results in uncontrolled replication of Mtb, whereas FAK+ reduces the intracellular survival of Mtb in macrophages. In addition, we demonstrate that enhanced control of intracellular Mtb replication by FAK+ macrophages is a result of increased production of antibacterial reactive oxygen species (ROS) as inhibitors of ROS production restored Mtb burden in FAK+ macrophages to same levels as in wild-type cells. Collectively, our data establishes FAK as an important host protective response during Mtb infection to block necrotic cell death and induce ROS production, which are required to restrict the survival of Mtb.


Asunto(s)
Quinasa 1 de Adhesión Focal/metabolismo , Interacciones Huésped-Patógeno/fisiología , Macrófagos Alveolares/microbiología , Macrófagos Alveolares/patología , Tuberculosis Pulmonar/inmunología , Línea Celular , Humanos , Macrófagos Alveolares/enzimología , Mycobacterium tuberculosis/inmunología , Necrosis/inmunología , Especies Reactivas de Oxígeno/metabolismo
4.
Biochem J ; 477(23): 4473-4489, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33175092

RESUMEN

Post-translational modifications such as phosphorylation, nitrosylation, and pupylation modulate multiple cellular processes in Mycobacterium tuberculosis. While protein methylation at lysine and arginine residues is widespread in eukaryotes, to date only two methylated proteins in Mtb have been identified. Here, we report the identification of methylation at lysine and/or arginine residues in nine mycobacterial proteins. Among the proteins identified, we chose MtrA, an essential response regulator of a two-component signaling system, which gets methylated on multiple lysine and arginine residues to examine the functional consequences of methylation. While methylation of K207 confers a marginal decrease in the DNA-binding ability of MtrA, methylation of R122 or K204 significantly reduces the interaction with the DNA. Overexpression of S-adenosyl homocysteine hydrolase (SahH), an enzyme that modulates the levels of S-adenosyl methionine in mycobacteria decreases the extent of MtrA methylation. Most importantly, we show that decreased MtrA methylation results in transcriptional activation of mtrA and sahH promoters. Collectively, we identify novel methylated proteins, expand the list of modifications in mycobacteria by adding arginine methylation, and show that methylation regulates MtrA activity. We propose that protein methylation could be a more prevalent modification in mycobacterial proteins.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Mycobacterium tuberculosis/metabolismo , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Metilación , Mycobacterium tuberculosis/genética
5.
Int Immunopharmacol ; 87: 106809, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32693356

RESUMEN

The currently available anti-tuberculosis treatment (ATT) comprises exclusively of anti-bacterial drugs, is very lengthy, has adverse side effects on the host and leads to the generation of drug-resistant variants. Therefore, a combination therapy directed against the pathogen and the host is required to counter tuberculosis (TB). Here we demonstrate that [6]-Gingerol, one of the most potent and pharmacologically active ingredients of ginger restricted mycobacterial growth inside the lungs, spleen and liver of mice infected with Mycobacterium tuberculosis (Mtb). The spleen of [6]-Gingerol treated mice displayed increased expression of pro-inflammatory cytokines and enhanced Th1/Th17 responses confirming the immunomodulatory action of [6]-Gingerol. Finally, [6]-Gingerol displayed an excellent potential as an adjunct drug, along with front line anti-TB drug isoniazid. Interestingly, [6]-Gingerol displayed stark anti-tubercular activity against dormant/starved bacilli and drug-resistant variants of Mtb. Taken together, these results indicate strong prospects of [6]-Gingerol as an adjunct anti-mycobacterial and immunomodulatory drug for the treatment of drug-susceptible and drug-resistant strains of TB.


Asunto(s)
Antibacterianos/uso terapéutico , Catecoles/uso terapéutico , Alcoholes Grasos/uso terapéutico , Isoniazida/uso terapéutico , Mycobacterium tuberculosis/fisiología , Células TH1/inmunología , Células Th17/inmunología , Tuberculosis/tratamiento farmacológico , Animales , Carga Bacteriana , Quimioterapia Adyuvante , Modelos Animales de Enfermedad , Femenino , Zingiber officinale/inmunología , Humanos , Inmunomodulación , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...