Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 11(9): 2938-2946, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35861604

RESUMEN

Malaria, a disease caused by the Plasmodium parasite carried by Anopheles mosquitoes, is commonly diagnosed by microscopy of peripheral blood smears and with rapid diagnostic tests. Both methods show limited detection of low parasitemia that may maintain transmission and hinder malaria elimination. We have developed a novel agglutination assay in which modified Saccharomyces cerevisiae cells act as antigen-displaying bead-like particles to capture malaria antibodies. The Epidermal Growth Factor-1 like domain (EGF1) of the Plasmodium falciparum merozoite surface protein-1 (PfMSP-119) was displayed on the yeast surface and shown to be capable of binding antimalaria antibodies. Mixed with a second yeast strain displaying the Z domain of Protein A from Staphylococcus aureus and allowed to settle in a round-bottomed well, the yeast produce a visually distinctive agglutination test result: a tight "button" at a low level of malarial antibodies, and a diffuse "sheet" when higher antibody levels are present. Positive agglutination results were observed in malaria-positive human serum to a serum dilution of 1:100 to 1:125. Since the yeast cells are inexpensive to produce, the test may be amenable to local production in regions seeking malaria surveillance information to guide their elimination programs.


Asunto(s)
Malaria Falciparum , Malaria , Aglutinación , Pruebas de Aglutinación , Animales , Anticuerpos Antiprotozoarios , Familia de Proteínas EGF , Humanos , Malaria/diagnóstico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Proteína 1 de Superficie de Merozoito/genética , Saccharomyces cerevisiae/genética
2.
Gut Microbes ; 13(1): 1994832, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34751631

RESUMEN

Escherichia coli Nissle (EcN), a probiotic bacterium, has been employed in treating inflammatory bowel disease, but the nature of its therapeutic effect is not fully understood. Intestinal inflammation alters the environment, exposing the microbial population to new stresses and eliciting transcriptional responses. We administered EcN to germ-free mice and then compared its transcriptional response between DSS-treated and untreated conditions using RNA-seq analysis to identify 187 differentially expressed genes (119 upregulated, 68 downregulated) and verifying a subset with qRT-PCR. The upregulated genes included many involved in flagella biosynthesis and motility, as well as several members of the formate hydrogenlyase complex. Despite prior evidence that these pathways are both transcriptionally regulated by nitric oxide, in vitro tests did not establish that nitric oxide exposure alone elicited the transcriptional response. The results provide new information on the transcriptional response of EcN to inflammation and establish a basis for further investigation of its anti-inflammatory activity.


Asunto(s)
Colitis/tratamiento farmacológico , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Flagelos/genética , Formiato Deshidrogenasas/genética , Hidrogenasas/genética , Complejos Multienzimáticos/genética , Probióticos/administración & dosificación , Animales , Colitis/inducido químicamente , Colitis/microbiología , Sulfato de Dextran/efectos adversos , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Femenino , Flagelos/metabolismo , Formiato Deshidrogenasas/metabolismo , Humanos , Hidrogenasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Complejos Multienzimáticos/metabolismo
3.
FEMS Yeast Res ; 21(4)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33864457

RESUMEN

Transcription factor (TF)-based biosensors have proven useful for increasing biomanufacturing yields, large-scale functional screening, and in environmental monitoring. Most yeast TF-based biosensors are built from natural promoters, resulting in large DNA parts retaining considerable homology to the host genome, which can complicate biological engineering efforts. There is a need to explore smaller, synthetic biosensors to expand the options for regulating gene expression in yeast. Here, we present a systematic approach to improving the design of an existing oxidative stress sensing biosensor in Saccharomyces cerevisiae based on the Yap1 transcription factor. Starting from a synthetic core promoter, we optimized the activity of a Yap1-dependent promoter through rational modification of a minimalist Yap1 upstream activating sequence. Our novel promoter achieves dynamic ranges of activation surpassing those of the previously engineered Yap1-dependent promoter, while reducing it to only 171 base pairs. We demonstrate that coupling the promoter to a positive-feedback-regulated TF further improves the biosensor by increasing its dynamic range of activation and reducing its limit of detection. We have illustrated the robustness and transferability of the biosensor by reproducing its activity in an unconventional probiotic yeast strain, Saccharomyces boulardii. Our findings can provide guidance in the general process of TF-based biosensor design.


Asunto(s)
Técnicas Biosensibles , Ingeniería Metabólica , Estrés Oxidativo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Regiones Promotoras Genéticas
4.
Dev Cell ; 44(3): 378-391.e5, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29396115

RESUMEN

Kes1/Osh4 is a member of the conserved, but functionally enigmatic, oxysterol binding protein-related protein (ORP) superfamily that inhibits phosphatidylinositol transfer protein (Sec14)-dependent membrane trafficking through the trans-Golgi (TGN)/endosomal network. We now report that Kes1, and select other ORPs, execute cell-cycle control activities as functionally non-redundant inhibitors of the G1/S transition when cells confront nutrient-poor environments and promote replicative aging. Kes1-dependent cell-cycle regulation requires the Greatwall/MASTL kinase ortholog Rim15, and is opposed by Sec14 activity in a mechanism independent of Kes1/Sec14 bulk membrane-trafficking functions. Moreover, the data identify Kes1 as a non-histone target for NuA4 through which this lysine acetyltransferase co-modulates membrane-trafficking and cell-cycle activities. We propose the Sec14/Kes1 lipid-exchange protein pair constitutes part of the mechanism for integrating TGN/endosomal lipid signaling with cell-cycle progression and hypothesize that ORPs define a family of stage-specific cell-cycle control factors that execute tumor-suppressor-like functions.


Asunto(s)
Ciclo Celular/fisiología , Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Histona Acetiltransferasas/metabolismo , Lípidos/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Receptores de Esteroides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Movimiento Celular , Endosomas , Lípidos/análisis , Saccharomyces cerevisiae/crecimiento & desarrollo , Transducción de Señal
5.
G3 (Bethesda) ; 7(6): 1799-1809, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28455416

RESUMEN

Actively proliferating cells constantly monitor and readjust their metabolic pathways to ensure the replenishment of phospholipids necessary for membrane biogenesis and intracellular trafficking. In Saccharomyces cerevisiae, multiple studies have suggested that the lysine acetyltransferase complex NuA4 plays a role in phospholipid homeostasis. For one, NuA4 mutants induce the expression of the inositol-3-phosphate synthase gene, INO1, which leads to excessive accumulation of inositol, a key metabolite used for phospholipid biosynthesis. Additionally, NuA4 mutants also display negative genetic interactions with sec14-1ts , a mutant of a lipid-binding gene responsible for phospholipid remodeling of the Golgi. Here, using a combination of genetics and transcriptional profiling, we explore the connections between NuA4, inositol, and Sec14 Surprisingly, we found that NuA4 mutants did not suppress but rather exacerbated the growth defects of sec14-1ts under inositol-depleted conditions. Transcriptome studies reveal that while loss of the NuA4 subunit EAF1 in sec14-1ts does derepress INO1 expression, it does not derepress all inositol/choline-responsive phospholipid genes, suggesting that the impact of Eaf1 on phospholipid homeostasis extends beyond inositol biosynthesis. In fact, we find that NuA4 mutants have impaired lipid droplet levels and through genetic and chemical approaches, we determine that the genetic interaction between sec14-1ts and NuA4 mutants potentially reflects a role for NuA4 in fatty acid biosynthesis. Altogether, our work identifies a new role for NuA4 in phospholipid homeostasis.


Asunto(s)
Homeostasis , Fosfolípidos/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácidos Grasos/biosíntesis , Regulación Fúngica de la Expresión Génica , Inositol/metabolismo , Metabolismo de los Lípidos/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA