Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 10(4): 2324-2336, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38520335

RESUMEN

Many methods for cancer treatment have been developed. Among them photothermal therapy (PTT) has drawn the most significant attention due to its noninvasiveness, remote control activation, and low side effects. However, a limited depth of light penetration of PTT is the main drawback. To improve the therapeutic efficiency, the development of combined PTT with other therapeutic agents is highly desirable. In this work, we have designed multifunctional composite carriers based on polylactic acid (PLA) particles decorated with gold nanorods (Au NRs) as nanoheaters and selenium nanoparticles (Se NPs) for reactive oxygen species (ROS) production in order to perform a combined PTT against B16-F10 melanoma. To do this, we have optimized the synthesis of PLA particles modified with Se NPs and Au NRs (PLA-Se:Au), studied the cellular interactions of PLA particles with B16-F10 cells, and analyzed in vivo biodistribution and tumor inhibition efficiency. The results of in vitro and in vivo experiments demonstrated the synergistic effect from ROS induced by Se NPs and the heating from Au NRs. In melanoma tumor-bearing mice, intratumoral injection of PLA-Se:Au followed by laser irradiation leads to almost complete elimination of tumor tissues. Thus, the optimal photothermal properties and ROS-generating capacity allow us to recommend PLA-Se:Au as a promising candidate for the development of the combined PTT against melanoma.


Asunto(s)
Hipertermia Inducida , Melanoma , Nanopartículas del Metal , Animales , Ratones , Melanoma/terapia , Especies Reactivas de Oxígeno , Distribución Tisular , Nanopartículas del Metal/uso terapéutico , Poliésteres
2.
J Phys Chem Lett ; 14(50): 11522-11528, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38091348

RESUMEN

The formation of red-emissive optical centers in carbon dots based on citric acid and formamide was investigated by varying the synthesis parameters with focus on finding optimal─necessary and sufficient─amount of precursors to decrease byproduct amount and to increase the chemical yield of red-emissive carbon dots. The emission is observed at 640 nm excited at 590 nm and quantum yield reaches up 19%. A high chemical yield of carbon dots of 26% was achieved at an optimal molar ratio of citric acid to formamide of 1:4.

3.
Nanomaterials (Basel) ; 13(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37242050

RESUMEN

Chiral plasmonic nanostructures have emerged as promising objects for numerous applications in nanophotonics, optoelectronics, biosensing, chemistry, and pharmacy. Here, we propose a novel method to induce strong chirality in achiral ensembles of gold nanoparticles via irradiation with circularly-polarized light of a picosecond Nd:YAG laser. Embedding of gold nanoparticles into a nanoporous silicate matrix leads to the formation of a racemic mixture of metal nanoparticles of different chirality that is enhanced by highly asymmetric dielectric environment of the nanoporous matrix. Then, illumination with intense circularly-polarized light selectively modifies the particles with the chirality defined by the handedness of the laser light, while their "enantiomers" survive the laser action almost unaffected. This novel modification of the spectral hole burning technique leads to the formation of an ensemble of plasmonic metal nanoparticles that demonstrates circular dichroism up to 100 mdeg. An unforeseen peculiarity of the chiral nanostructures obtained in this way is that 2D and 3D nanostructures contribute almost equally to the observed circular dichroism signals. Thus, the circular dichroism is neither even nor odd under reversal of direction of light propagation. These findings will help guide the development of a passive optical modulator and nanoplatform for enhanced chiral sensing and catalysis.

4.
Nanomaterials (Basel) ; 10(7)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610447

RESUMEN

Molecular overtones stretching modes that occupy the near-infrared (NIR) are weak compared to the fundamental vibrations. Here we report on the enhancement of absorption by molecular vibrations overtones via electromagnetic field enhancement of plasmonic nanoparallelepipeds comprising a square lattice. We explore numerically, using finite element method (FEM), gold metasurfaces on a transparent dielectric substrate covered by weakly absorbing analyte supporting N-H and C-H overtone absorption bands around 1.5 µ m and around 1.67 µ m, respectively. We found that the absorption enhancement in N-H overtone transition can be increased up to the factor of 22.5 due to the combination of localized surface plasmon resonance in prolonged nanoparticles and lattice Rayleigh anomaly. Our approach may be extended for sensitive identification of other functional group overtone transitions in the near-infrared spectral range.

5.
Opt Express ; 27(21): 29471-29478, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31684207

RESUMEN

Resonant coupling between plasmonic nanoantennas and molecular vibrational excitations is employed to amplify the weak overtone transitions that reside in the near-infrared. We explore for the first time the differential extinction of forbidden molecular overtone transitions coupled to the localized surface plasmons. We show a non-trivial interplay between the molecular absorption enhancement and suppression of plasmonic absorption in a coupled system. When the resonance conditions are met at 1.5 µm, two orders of magnitude enhancement of differential extinction as compared to the extinction of the same amount of free probe molecules is achieved. Our results pave a road toward a new class of surface enhanced near-infrared absorption-based sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...