Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
3.
Dis Model Mech ; 5(4): 481-91, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22563064

RESUMEN

Cardiac fibrosis is critically involved in the adverse remodeling accompanying dilated cardiomyopathies (DCMs), which leads to cardiac dysfunction and heart failure (HF). Connective tissue growth factor (CTGF), a profibrotic cytokine, plays a key role in this deleterious process. Some beneficial effects of IGF1 on cardiomyopathy have been described, but its potential role in improving DCM is less well characterized. We investigated the consequences of expressing a cardiac-specific transgene encoding locally acting IGF1 propeptide (muscle-produced IGF1; mIGF1) on disease progression in a mouse model of DCM [cardiac-specific and inducible serum response factor (SRF) gene disruption] that mimics some forms of human DCM. Cardiac-specific mIGF1 expression substantially extended the lifespan of SRF mutant mice, markedly improved cardiac functions, and delayed both DCM and HF. These protective effects were accompanied by an overall improvement in cardiomyocyte architecture and a massive reduction of myocardial fibrosis with a concomitant amelioration of inflammation. At least some of the beneficial effects of mIGF1 transgene expression were due to mIGF1 counteracting the strong increase in CTGF expression within cardiomyocytes caused by SRF deficiency, resulting in the blockade of fibroblast proliferation and related myocardial fibrosis. These findings demonstrate that SRF plays a key role in the modulation of cardiac fibrosis through repression of cardiomyocyte CTGF expression in a paracrine fashion. They also explain how impaired SRF function observed in human HF promotes fibrosis and adverse cardiac remodeling. Locally acting mIGF1 efficiently protects the myocardium from these adverse processes, and might thus represent a therapeutic avenue to counter DCM.


Asunto(s)
Cardiomiopatía Dilatada/fisiopatología , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Corazón/fisiopatología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Miocardio/patología , Péptidos/metabolismo , Factor de Respuesta Sérica/metabolismo , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Proliferación Celular , Fibrosis , Regulación de la Expresión Génica , Pruebas de Función Cardíaca , Humanos , Inflamación/patología , Longevidad , Ratones , Ratones Mutantes , Miocardio/ultraestructura , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Especificidad de Órganos
4.
Cell Metab ; 15(1): 25-37, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22225874

RESUMEN

Adult skeletal muscles adapt their fiber size to workload. We show that serum response factor (Srf) is required for satellite cell-mediated hypertrophic muscle growth. Deletion of Srf from myofibers and not satellite cells blunts overload-induced hypertrophy, and impairs satellite cell proliferation and recruitment to pre-existing fibers. We reveal a gene network in which Srf within myofibers modulates interleukin-6 and cyclooxygenase-2/interleukin-4 expressions and therefore exerts a paracrine control of satellite cell functions. In Srf-deleted muscles, in vivo overexpression of interleukin-6 is sufficient to restore satellite cell proliferation but not satellite cell fusion and overall growth. In contrast cyclooxygenase-2/interleukin-4 overexpression rescue satellite cell recruitment and muscle growth without affecting satellite cell proliferation, identifying altered fusion as the limiting cellular event. These findings unravel a role for Srf in the translation of mechanical cues applied to myofibers into paracrine signals, which in turn will modulate satellite cell functions and support muscle growth.


Asunto(s)
Músculo Esquelético/patología , Comunicación Paracrina , Células Satélite del Músculo Esquelético/metabolismo , Factor de Respuesta Sérica/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Femenino , Vectores Genéticos/metabolismo , Hipertrofia , Interleucina-4/genética , Interleucina-4/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/fisiología , Factor de Respuesta Sérica/genética
5.
Mol Cell Biol ; 31(2): 267-76, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21098124

RESUMEN

Serum response factor (SRF) recruits members of two families of signal-regulated coactivators, the extracellular signal-regulated kinase (ERK)-regulated ternary complex factors (TCFs) and the actin-regulated myocardin-related transcription factors (MRTFs), to its target genes through its DNA-binding domain. Whether coactivator association is required for SRF function in vivo and whether particular SRF functions reflect specific coupling to one or the other signal pathway have remained largely unexplored. We show that SRF is essential for thymocyte positive selection and thymic T(reg) and NK T-cell development but dispensable for early thymocyte development and negative selection. Expression of wild-type SRF, or mutants lacking the N-terminal phosphorylation sites or C-terminal transcriptional activation domain, restores positive selection in SRF null thymocytes. In contrast, SRF.V194E, which cannot recruit TCF or MRTF family members, is inactive, although it is recruited to target genes. Fusion of a TCF C-terminal activation domain to SRF.V194E effectively restores ERK-dependent single-positive (SP) thymocyte development. The resulting SP thymocytes exhibit normal surface marker expression and proliferation following T-cell receptor cross-linking. Thus, ERK signaling through the TCF pathway to SRF is necessary and sufficient for SRF function in thymocyte positive selection.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor de Respuesta Sérica/metabolismo , Transducción de Señal/fisiología , Linfocitos T/fisiología , Animales , Quinasas MAP Reguladas por Señal Extracelular/genética , Eliminación de Gen , Células Asesinas Naturales/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Respuesta Sérica/genética , Subgrupos de Linfocitos T/fisiología , Linfocitos T/citología , Linfocitos T Reguladores/fisiología , Factores de Transcripción TCF/genética , Factores de Transcripción TCF/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Blood ; 116(22): 4464-73, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-20709909

RESUMEN

Adhesion properties of hematopoietic stem cells (HSCs) in the bone marrow (BM) niches control their migration and affect their cell-cycle dynamics. The serum response factor (Srf) regulates growth factor-inducible genes and genes controlling cytoskeleton structures involved in cell spreading, adhesion, and migration. We identified a role for Srf in HSC adhesion and steady-state hematopoiesis. Conditional deletion of Srf in BM cells resulted in a 3-fold expansion of the long- and short-term HSCs and multipotent progenitors (MPPs), which occurs without long-term modification of cell-cycle dynamics. Early differentiation steps to myeloid and lymphoid lineages were normal, but Srf loss results in alterations in mature-cell production and severe thrombocytopenia. Srf-null BM cells also displayed compromised engraftment properties in transplantation assays. Gene expression analysis identified Srf target genes expressed in HSCs, including a network of genes associated with cell migration and adhesion. Srf-null stem cells and MPPs displayed impair expression of the integrin network and decreased adherence in vitro. In addition, Srf-null mice showed increase numbers of circulating stem and progenitor cells, which likely reflect their reduced retention in the BM. Altogether, our results demonstrate that Srf is an essential regulator of stem cells and MPP adhesion, and suggest that Srf acts mainly through cell-matrix interactions and integrin signaling.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas/citología , Factor de Respuesta Sérica/metabolismo , Animales , Adhesión Celular , Ciclo Celular , Linaje de la Célula , Eliminación de Gen , Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Integrinas/metabolismo , Ratones , Factor de Respuesta Sérica/genética
7.
FASEB J ; 23(7): 2264-73, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19237506

RESUMEN

Activation of AMP-activated protein kinase (AMPK) inhibits protein synthesis through the suppression of the mammalian target of rapamycin complex 1 (mTORC1), a critical regulator of muscle growth. The purpose of this investigation was to determine the role of the AMPKalpha1 catalytic subunit on muscle cell size control and adaptation to muscle hypertrophy. We found that AMPKalpha1(-/-) primary cultured myotubes and myofibers exhibit larger cell size compared with control cells in response to chronic Akt activation. We next subjected the plantaris muscle of AMPKalpha1(-/-) and control mice to mechanical overloading to induce muscle hypertrophy. We observed significant elevations of AMPKalpha1 activity in the control muscle at days 7 and 21 after the overload. Overloading-induced muscle hypertrophy was significantly accelerated in AMPKalpha1(-/-) mice than in control mice [+32 vs. +53% at day 7 and +57 vs. +76% at day 21 in control vs. AMPKalpha1(-/-) mice, respectively]. This enhanced growth of AMPKalpha1-deficient muscle was accompanied by increased phosphorylation of mTOR signaling downstream targets and decreased phosphorylation of eukaryotic elongation factor 2. These results demonstrate that AMPKalpha1 plays an important role in limiting skeletal muscle overgrowth during hypertrophy through inhibition of the mTOR-signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Proteínas Portadoras/metabolismo , Hipertrofia , Músculo Esquelético/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Quinasas Activadas por AMP/deficiencia , Animales , Aumento de la Célula , Ratones , Ratones Noqueados , Factor 2 de Elongación Peptídica/metabolismo , Fosforilación , Sustancias Protectoras , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Estrés Mecánico , Serina-Treonina Quinasas TOR
8.
PLoS One ; 3(12): e3910, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19079548

RESUMEN

Aging is associated with a progressive loss of muscle mass, increased adiposity and fibrosis that leads to sarcopenia. At the molecular level, muscle aging is known to alter the expression of a variety of genes but very little is known about the molecular effectors involved. SRF (Serum Response Factor) is a crucial transcription factor for muscle-specific gene expression and for post-natal skeletal muscle growth. To assess its role in adult skeletal muscle physiology, we developed a post-mitotic myofiber-specific and tamoxifen-inducible SRF knockout model. Five months after SRF loss, no obvious muscle phenotype was observed suggesting that SRF is not crucial for myofiber maintenance. However, mutant mice progressively developed IIB myofiber-specific atrophy accompanied by a metabolic switch towards a more oxidative phenotype, muscular lipid accumulation, sarcomere disorganization and fibrosis. After injury, mutant muscles exhibited an altered regeneration process, showing smaller regenerated fibers and persistent fibrosis. All of these features are strongly reminiscent of abnormalities encountered in aging skeletal muscle. Interestingly, we also observed an important age associated decrease in SRF expression in mice and human muscles. Altogether, these results suggest that a naturally occurring SRF down-regulation precedes and contributes to the muscle aging process. Indeed, triggering SRF loss in the muscles of mutant mice results in an accelerated aging process.


Asunto(s)
Envejecimiento Prematuro/patología , Músculo Esquelético/patología , Factor de Respuesta Sérica/deficiencia , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Regulación hacia Abajo/efectos de los fármacos , Fibrosis , Humanos , Técnicas In Vitro , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Ratones Noqueados , Ratones Mutantes , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/ultraestructura , Atrofia Muscular/patología , Regeneración/efectos de los fármacos , Reproducibilidad de los Resultados , Sarcómeros/efectos de los fármacos , Sarcómeros/patología , Sarcómeros/ultraestructura , Factor de Respuesta Sérica/genética , Tamoxifeno/administración & dosificación , Tamoxifeno/farmacología
9.
Eur J Heart Fail ; 10(7): 635-45, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18501668

RESUMEN

BACKGROUND AND AIMS: Regional alterations in ventricular mechanical functions are a primary determinant for the risk of myocardial injuries in various cardiomyopathies. The serum response factor (SRF) is a transcription factor regulating contractile and cytoskeletal genes and may play an important role in the remodelling of myocardium at the cellular level. METHODS: Using Desmin-Cre transgenic mice, we generated a model of mosaic inactivation of a floxed-Srf allele in the heart to analyze the consequence of regional alterations of SRF-mediated functions in the myocardium. RESULTS: Two types of cardiomyocytes co-existed in the Desmin-Cre:Sf/Sf mice. Cardiomyocytes lacking SRF became thin and elongated while cardiomyocytes containing SRF became hypertrophic. Several physiological contractile genes were down-regulated while skeletal alpha-actin was induced in SRF positive area only. Mutants developed heart failure associated with the presence of focal lesions in the myocardium, and died before month 11. CONCLUSIONS: Juxtaposition of functional SRF wild-type and failing SRF mutant cardiomyocytes generates deleterious heterogeneity in the myocardium. Our results show that SRF contributes to the capacity of cardiomyocytes to remodel their shape and contractile functions in response to their local environment; suggesting that it may play a role in pathologies involving regional alterations of ventricular mechanics in the heart.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Insuficiencia Cardíaca/genética , Mosaicismo , Miocardio/metabolismo , Factor de Respuesta Sérica/genética , Alelos , Análisis de Varianza , Animales , Cardiomiopatía Hipertrófica/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Etiquetado Corte-Fin in Situ , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Respuesta Sérica/deficiencia
10.
Am J Physiol Gastrointest Liver Physiol ; 292(4): G996-G1001, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17170024

RESUMEN

Various immediate early genes (IEGs) upregulated during the early process of liver regeneration are transcriptional targets of the serum response factor (SRF). We show here that the expression of SRF is rapidly induced in rodent liver after partial hepatectomy. Because the inactivation of the SRF gene in mice is embryonic lethal, the in vivo role of SRF in liver regeneration after partial hepatectomy was analyzed in mutant mice conditionally deleted for SRF in the liver. We demonstrate that SRF is not an essential factor for liver ontogenesis. However, adult mutant mice show impaired liver regeneration after partial hepatectomy, associated with a blunted upregulation of various SRF target IEGs. In conclusion, our work suggests that SRF is an early response transcription factor that may contribute to the initial phases of liver regeneration through its activation of IEGs.


Asunto(s)
Regeneración Hepática , Hígado/metabolismo , Factor de Respuesta Sérica/metabolismo , Animales , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , ADN/biosíntesis , Hepatectomía , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Hígado/citología , Hígado/fisiología , Hígado/cirugía , Regeneración Hepática/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/metabolismo , Factor de Respuesta Sérica/deficiencia , Factor de Respuesta Sérica/genética , Factores de Tiempo , Activación Transcripcional
11.
Mol Cell Biol ; 26(17): 6664-74, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16914747

RESUMEN

Serum response factor (SRF) is a crucial transcriptional factor for muscle-specific gene expression. We investigated SRF function in adult skeletal muscles, using mice with a postmitotic myofiber-targeted disruption of the SRF gene. Mutant mice displayed severe skeletal muscle mass reductions due to a postnatal muscle growth defect resulting in highly hypotrophic adult myofibers. SRF-depleted myofibers also failed to regenerate following injury. Muscles lacking SRF had very low levels of muscle creatine kinase and skeletal alpha-actin (SKA) transcripts and displayed other alterations to the gene expression program, indicating an overall immaturity of mutant muscles. This loss of SKA expression, together with a decrease in beta-tropomyosin expression, contributed to myofiber growth defects, as suggested by the extensive sarcomere disorganization found in mutant muscles. However, we observed a downregulation of interleukin 4 (IL-4) and insulin-like growth factor 1 (IGF-1) expression in mutant myofibers which could also account for their defective growth and regeneration. Indeed, our demonstration of SRF binding to interleukin 4 and IGF-1 promoters in vivo suggests a new crucial role for SRF in pathways involved in muscle growth and regeneration.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Interleucina-4/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/fisiología , Regeneración , Factor de Respuesta Sérica/metabolismo , Animales , Animales Recién Nacidos , Secuencia de Bases , Núcleo Celular/metabolismo , Tamaño de la Célula , Regulación de la Expresión Génica , Factor I del Crecimiento Similar a la Insulina/genética , Integrasas/genética , Interleucina-4/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Músculo Esquelético/citología , Músculo Esquelético/ultraestructura , Tamaño de los Órganos , Fenotipo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sarcómeros/patología , Sarcómeros/ultraestructura , Factor de Respuesta Sérica/deficiencia , Factor de Respuesta Sérica/genética
12.
Lab Invest ; 86(10): 1020-36, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16894357

RESUMEN

The Serum Response Factor (SRF) is widely expressed transcription factor acting at the confluence of multiple signaling pathways and has been implicated in the control of differentiation, growth, and cell death. In the present study, we found that SRF is expressed in the developing and adult pancreas. To explore the possible role of SRF in this organ, we have generated mutant mice with conditional disruption of the Srf gene. Such mutants presented normal development of both the exocrine and endocrine pancreas indicating that SRF is dispensable for pancreas ontogenesis. However, after weaning, these mice developed profound morphological alterations of the exocrine pancreas, which were reminiscent of severe pancreatitis. In these mice, massive acinar injury, Nuclear Factor Kappa B activation and proinflammatory cytokines release led to complete destruction of the exocrine pancreas and its replacement by adipose tissue. Despite these changes, the organization and function of the endocrine islets of Langerhans remained well-preserved. This new animal model of spontaneous pancreatitis could prove a valuable tool to gain further insight into the physiopathology of this disease.


Asunto(s)
Páncreas Exocrino/fisiopatología , Pancreatitis/fisiopatología , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/fisiología , Animales , Modelos Animales de Enfermedad , Islotes Pancreáticos/fisiología , Ratones , Ratones Transgénicos , FN-kappa B/metabolismo , Páncreas Exocrino/patología , Pancreatitis/inmunología , Pancreatitis/patología
13.
J Muscle Res Cell Motil ; 27(1): 1-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16362724

RESUMEN

Transforming growth factor-beta1 (TGF-beta1) is known to be expressed in the environment of developing fast muscle fibres during ontogenesis. In the present study, we have examined effects of administration of either TGF-beta1 or neutralizing TGF-beta1 antibody on the induction of fast type phenotype in regenerating skeletal muscles in rats. Expressions of fast and slow myosin heavy chain (MHC) isoforms were studied using protein electrophoresis, at 3 and 6 weeks after myotoxic treatment. Muscle contractile properties were also measured in situ. The results have shown that a single injection of TGF-beta1 into the regenerating slow soleus muscle increased the expression of fast MHC-2x/d and MHC-2a and decreases that of slow MHC-1 (P<0.05). Moreover, it reduced the degree of tetanic fusion during contraction (P<0.05). Conversely, injection of neutralizing antibody against TGF-beta1 into the regenerating fast EDL muscle increased the expression of MHC-2a and MHC-1 (P<0.05). In conclusion, when the slow muscle was regenerating in the presence of an increased level of TGF-beta1, it induced a shift to a less slow MHC phenotype and contractile characteristics. Conversely, neutralization of TGF-beta1 in the regenerating fast muscle induced a shift to a less fast MHC expression. Together these results suggest that TGF-beta1 influences some aspects of fast muscle-type patterning during skeletal muscle regeneration.


Asunto(s)
Contracción Muscular/fisiología , Fibras Musculares de Contracción Rápida/metabolismo , Músculo Esquelético/metabolismo , Regeneración/fisiología , Factor de Crecimiento Transformador beta1/fisiología , Animales , Anticuerpos/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Masculino , Contracción Muscular/efectos de los fármacos , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Cadenas Pesadas de Miosina/efectos de los fármacos , Cadenas Pesadas de Miosina/metabolismo , Fenotipo , Isoformas de Proteínas/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Ratas , Ratas Wistar , Regeneración/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Toxinas Biológicas/farmacología , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/farmacología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
14.
Circulation ; 112(19): 2930-9, 2005 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-16260633

RESUMEN

BACKGROUND: Serum response factor (SRF) is a cardiac transcription factor involved in cell growth and differentiation. We have shown, using the Cre/loxP system, that cardiac-specific disruption of SRF gene in the embryonic heart results in lethal cardiac defects. The role of SRF in adult heart is unknown. METHODS AND RESULTS: We disrupted SRF in the adult heart using a heart-specific tamoxifen-inducible Cre recombinase. This disruption led to impaired left ventricular function with reduced contractility, subsequently progressing to dilated cardiomyopathy, as demonstrated by serial echocardiography, including tissue Doppler imaging. The cytoarchitecture of cardiomyocytes was altered in the intercalated disks. All mutant mice died from heart failure 10 weeks after treatment. These functional and structural defects were preceded by early alterations in the cardiac gene expression program: major decreases in mRNA levels for cardiac alpha-actin, muscle creatine kinase, and calcium-handling genes. CONCLUSIONS: SRF is crucial for adult cardiac function and integrity. We suggest that the rapid progression to heart failure in SRF mutant mice results primarily from decreased expression of proteins involved in force generation and transmission, low levels of polymerized actin, and changes in cytoarchitecture, without hypertrophic compensation. These cardiac-specific SRF-deficient mice have the morphological and clinical features of acquired dilated cardiomyopathy in humans and may therefore be used as an inducible model of this disorder.


Asunto(s)
Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/fisiopatología , Corazón/fisiopatología , Factor de Respuesta Sérica/deficiencia , Factor de Respuesta Sérica/genética , Animales , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Femenino , Corazón/embriología , Homocigoto , Humanos , Complejo Mayor de Histocompatibilidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Contracción Miocárdica , Valores de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Mol Cell Biol ; 24(14): 6253-67, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15226428

RESUMEN

Muscle fibers show great differences in their contractile and metabolic properties. This diversity enables skeletal muscles to fulfill and adapt to different tasks. In this report, we show that the Six/Eya pathway is implicated in the establishment and maintenance of the fast-twitch skeletal muscle phenotype. We demonstrate that the MEF3/Six DNA binding element present in the aldolase A pM promoter mediates the high level of activation of this promoter in fast-twitch glycolytic (but not in slow-twitch) muscle fibers. We also show that among the Six and Eya gene products expressed in mouse skeletal muscle, Six1 and Eya1 proteins accumulate preferentially in the nuclei of fast-twitch muscles. The forced expression of Six1 and Eya1 together in the slow-twitch soleus muscle induced a fiber-type transition characterized by the replacement of myosin heavy chain I and IIA isoforms by the faster IIB and/or IIX isoforms, the activation of fast-twitch fiber-specific genes, and a switch toward glycolytic metabolism. Collectively, these data identify Six1 and Eya1 as the first transcriptional complex that is able to reprogram adult slow-twitch oxidative fibers toward a fast-twitch glycolytic phenotype.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/fisiología , Regiones Promotoras Genéticas , Transactivadores/metabolismo , Animales , Núcleo Celular/metabolismo , Femenino , Fructosa-Bifosfato Aldolasa/genética , Genes Reporteros , Proteínas de Homeodominio/genética , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares de Contracción Lenta/citología , Proteínas Nucleares , Fenotipo , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Fosfatasas , Tacrolimus/metabolismo , Transactivadores/genética , Transgenes
16.
Mol Cell Biol ; 24(12): 5281-9, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15169892

RESUMEN

Serum response factor (SRF) is at the confluence of multiple signaling pathways controlling the transcription of immediate-early response genes and muscle-specific genes. There are active SRF target sequences in more than 50 genes expressed in the three muscle lineages including normal and diseased hearts. However, the role of SRF in heart formation has not been addressed in vivo thus far due to the early requirement of SRF for mesoderm formation. We have generated a conditional mutant of SRF by using Cre-LoxP strategy that will be extremely useful to study the role of SRF in embryonic and postnatal cardiac functions, as well as in other tissues. This report shows that heart-specific deletion of SRF in the embryo by using a new beta MHC-Cre transgenic mouse line results in lethal cardiac defects between embryonic day 10.5 (E10.5) and E13.5, as evidenced by abnormally thin myocardium, dilated cardiac chambers, poor trabeculation, and a disorganized interventricular septum. At E9.5, we found a marked reduction in the expression of essential regulators of heart development, including Nkx2.5, GATA4, myocardin, and the SRF target gene c-fos prior to overt maldevelopment. We conclude that SRF is crucial for cardiac differentiation and maturation, acting as a global regulator of multiple developmental genes.


Asunto(s)
Corazón Fetal/embriología , Factor de Respuesta Sérica/genética , Animales , Apoptosis , Secuencia de Bases , División Celular , ADN Complementario/genética , Femenino , Muerte Fetal , Corazón Fetal/citología , Corazón Fetal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Edad Gestacional , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/etiología , Cardiopatías Congénitas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Especificidad de Órganos , Embarazo , Factor de Respuesta Sérica/antagonistas & inhibidores , Factor de Respuesta Sérica/deficiencia , Factor de Respuesta Sérica/fisiología , Factores de Transcripción/genética
17.
J Soc Biol ; 198(1): 73-9, 2004.
Artículo en Francés | MEDLINE | ID: mdl-15146959

RESUMEN

Because the GnRH receptor plays a paramount role within the reproductive axis, the understanding of the molecular apparatus that governs the tissue-specific expression and regulation of this gene must lead to a better knowledge of the physiology and the physiopathology of the gonadotrope function. To elucidate these mechanisms, we have used two complementary in vivo and in vitro approaches. Firstly, we have isolated the pituitary promoter of the rat GnRH receptor gene and investigated its activity using transient transfection into two gonadotrope-derived cell lines, the alphaT3-1 and the LbetaT2 cell lines. We have thus defined a primary set of transcription factors involved in the tissue-specific expression of the GnRH receptor gene. These include the steroidogenic factor-1 (SF-1) which plays a decisive role while functionally interacting with proteins related to the GATA and LIM homeodomain families of transcription factors. In addition, we highlighted the critical implication of SF-1 and its functional interaction with a CREB-related factor in the stimulatory action of PACAP (Pituitary Adenylate Cyclase Activating Polypeptide) on promoter activity. These results have led us to analyze the activity of this promoter by transgenesis in the mouse using human placental alkaline phosphatase as a reporter gene. In agreement with the in vitro data, the pituitary promoter was found to confer gonadotrope-specific activity in the pituitary. It was also able to direct transgene expression in several areas of the central nervous system known to express the endogenous GnRH receptor, in particular in the hippocampo-septal complex. Some of these tissue do not express SF-1, suggesting that, in vivo, its role would not be as decisive as suggested by the in vitro experiments. Surprisingly, during pituitary ontogenesis, the transgene is expressed as early as E 13.5 whereas SF-1 is not yet present in the pituitary. Thus, in vivo, SF-1 would not be necessary for the activation of the GnRH receptor gene during the early developmental stages in the pituitary. These results are consistent with data obtained following general or pituitary-specific knockout of the gene encoding SF-1, suggesting that the GnRH receptor is expressed despite the absence of this factor. Identifying the factors responsible for the activation of the GnRH receptor gene at these early developmental stages should make it possible to refine the role of SF-1, not only in gene regulation but more generally, in the physiology and the physiopathology of the gonadotrope function.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica/fisiología , Receptores LHRH/biosíntesis , Factores de Transcripción/fisiología , Fosfatasa Alcalina , Animales , Línea Celular , Factores de Transcripción Fushi Tarazu , Proteínas Ligadas a GPI , Regulación de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Edad Gestacional , Hipocampo/metabolismo , Proteínas de Homeodominio/fisiología , Humanos , Isoenzimas/genética , Ratones , Ratones Transgénicos , Modelos Biológicos , Neuropéptidos/fisiología , Especificidad de Órganos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Adenohipófisis/embriología , Adenohipófisis/metabolismo , Regiones Promotoras Genéticas , Ratas , Receptores Citoplasmáticos y Nucleares , Receptores LHRH/genética , Tabique Pelúcido/metabolismo , Factor Esteroidogénico 1 , Transfección
18.
Endocrinology ; 145(2): 983-93, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14592958

RESUMEN

Previous studies dealing with the mechanisms underlying the tissue-specific and regulated expression of the GnRH receptor (GnRH-R) gene led us to define several cis-acting regulatory sequences in the rat GnRH-R gene promoter. These include functional sites for steroidogenic factor 1, activator protein 1, and motifs related to GATA and LIM homeodomain response elements as demonstrated primarily in transient transfection assays in mouse gonadotrope-derived cell lines. To understand these mechanisms in more depth, we generated transgenic mice bearing the 3.3-kb rat GnRH-R promoter linked to the human placental alkaline phosphatase reporter gene. Here we show that the rat GnRH-R promoter drives the expression of the reporter gene in pituitary cells expressing the LHbeta and/or FSHbeta subunit but not in TSHbeta- or GH-positive cells. Furthermore, the spatial and temporal pattern of the transgene expression during the development of the pituitary was compatible with that characterizing the emergence of the gonadotrope lineage. In particular, transgene expression is colocalized with the expression of the glycoprotein hormone alpha-subunit at embryonic day 13.5 and with that of steroidogenic factor 1 at later stages of pituitary development. Transgene expression was also found in specific brain areas, such as the lateral septum and the hippocampus. A single promoter is thus capable of directing transcription in highly diverse tissues, raising the question of the different combinations of transcription factors that lead to such a multiple, but nevertheless cell-specific, expressions of the GnRH-R gene.


Asunto(s)
Fosfatasa Alcalina/genética , Genes Reporteros/genética , Hormona Liberadora de Gonadotropina/genética , Adenohipófisis/enzimología , Placenta/enzimología , Regiones Promotoras Genéticas/genética , Animales , Química Encefálica , Femenino , Hormona Folículo Estimulante de Subunidad beta/genética , Eliminación de Gen , Expresión Génica , Regulación de la Expresión Génica , Histocitoquímica , Humanos , Hormona Luteinizante de Subunidad beta/genética , Masculino , Ratones , Ratones Transgénicos , Adenohipófisis/embriología , Adenohipófisis/crecimiento & desarrollo , Embarazo , Ratas , Proteínas Recombinantes de Fusión , Secuencias Reguladoras de Ácidos Nucleicos
19.
Dev Dyn ; 228(4): 594-605, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14648836

RESUMEN

We previously characterised transgenic mice in which fast-muscle-specific regulatory sequences from the human aldolase A pM promoter drive the chloramphenicol acetyltransferase gene expression. Mutation of a NF1/MEF2 binding site (M2 motif) in this promoter does not affect fibre-type specificity of the transgene but modifies its expression in a subset of fast-twitch fibres at the limb level, preferentially affecting distal limb muscles. We investigated the molecular and cellular bases of this peculiar expression pattern that provided an adequate model to characterise the mechanisms responsible for muscle positional information. By direct electrotransfer of mutated M2 construct in adult muscle, we demonstrate that positional differences in mutated M2 transgene expression are not observed when the transgene is not integrated into chromatin. Also, this transgene expression pattern does not seem to be correlated with the extent of CpG methylation in its promoter sequence. Finally, we show that positional values reflected by CAT levels are maintained in primary cultures established from different adult limb muscles, as well as in heterotopically transplanted muscles. Our results suggest that mutation of the M2 site contributes to reveal a molecular memory of fibre fate that would be set up on pM promoter during development and persist into adulthood possibly through a chromatin imprint maintained in satellite cells associated with various limb muscles.


Asunto(s)
Fibras Musculares de Contracción Rápida/fisiología , Músculos/fisiología , Regiones Promotoras Genéticas , Activación Transcripcional , Transgenes , Secuencias de Aminoácidos , Animales , Células Cultivadas , Cromatina/metabolismo , Islas de CpG , Metilación de ADN , Extremidades/fisiología , Femenino , Fructosa-Bifosfato Aldolasa/metabolismo , Miembro Posterior/metabolismo , Metilación , Ratones , Ratones Transgénicos , Músculos/metabolismo , Mutación , Trasplante de Tejidos , Transfección
20.
Am J Physiol Cell Physiol ; 285(5): C1071-81, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12839830

RESUMEN

Muscle electrotransfer has recently become a promising tool for efficient delivery of plasmids and transgene expression in skeletal muscle. This technology has been mainly applied to use of muscle as a bioreactor for production of therapeutic proteins. However, it remains to be determined whether muscle electrotransfer may also be accurately used as an alternative tool to transgenesis for studying aspects of muscle-specific gene control that must be explored in fully mature muscle fibers in vivo, such as fiber specificity and nerve dependence. It was also not known to what extent the initial electrical stimulations alter muscle physiology and gene expression. Therefore, optimized conditions of skeletal muscle electroporation were first tested for their effects on muscles of transgenic mice harboring a pM310-CAT transgene in which the CAT reporter gene was under control of the fast IIB fiber-specific and nerve-dependent aldolase A pM promoter. Surprisingly, electrostimulation led to a drastic but transient shutdown of pM310-CAT transgene expression concomitant with very transient activation of MyoD and, mostly, with activation of myogenin, suggesting profound alterations in transcriptional status of the electroporated muscle. Return to a normal transcriptional state was observed 7-10 days after electroporation. Therefore, we investigated whether a reporter construct placed under control of pM could exhibit fiber-specific expression 10 days after electrotransfer in either fast tibialis anterior or slow soleus muscle. We show that not only fiber specificity, but also nerve dependence, of a pM-driven construct can be reproduced. However, after electrotransfer, pM displayed a less tight control than previously observed for the same promoter when integrated in a chromatin context.


Asunto(s)
Electroporación/métodos , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/inervación , Regiones Promotoras Genéticas/fisiología , Animales , Desnervación , Estimulación Eléctrica/métodos , Femenino , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/fisiología , Transgenes/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...