Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Inorg Chem ; 2019(8)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38715932

RESUMEN

Neutron diffraction and spectroscopy offer unique insight into structures and properties of solids and molecular materials. All neutron instruments located at the various neutron sources are distinct, even if their designs are based on similar principles, and thus, they are usually less familiar to the community than commercial X-ray diffractometers and optical spectrometers. Major neutron instruments in the USA, which are open to scientists around the world, and examples of their use in coordination chemistry research are presented here, along with a list of similar instruments at main neutron facilities in other countries. The reader may easily and quickly find from this minireview an appropriate neutron instrument for research. The instruments include single-crystal and powder diffractometers to determine structures, inelastic neutron scattering (INS) spectrometers to probe magnetic and vibrational excitations, and quasielastic neutron scattering (QENS) spectrometers to study molecular dynamics such as methyl rotation on ligands. Key and unique features of the diffraction and neutron spectroscopy that are relevant to inorganic chemistry are reviewed.

2.
Nat Chem ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594366

RESUMEN

Conversion of plastic wastes to valuable carbon resources without using noble metal catalysts or external hydrogen remains a challenging task. Here we report a layered self-pillared zeolite that enables the conversion of polyethylene to gasoline with a remarkable selectivity of 99% and yields of >80% in 4 h at 240 °C. The liquid product is primarily composed of branched alkanes (selectivity of 72%), affording a high research octane number of 88.0 that is comparable to commercial gasoline (86.6). In situ inelastic neutron scattering, small-angle neutron scattering, solid-state nuclear magnetic resonance, X-ray absorption spectroscopy and isotope-labelling experiments reveal that the activation of polyethylene is promoted by the open framework tri-coordinated Al sites of the zeolite, followed by ß-scission and isomerization on Brönsted acids sites, accompanied by hydride transfer over open framework tri-coordinated Al sites through a self-supplied hydrogen pathway to yield selectivity to branched alkanes. This study shows the potential of layered zeolite materials in enabling the upcycling of plastic wastes.

3.
Nat Chem ; 16(5): 809-816, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321236

RESUMEN

Nanoporous materials have attracted great attention for gas storage, but achieving high volumetric storage capacity remains a challenge. Here, by using neutron powder diffraction, volumetric gas adsorption, inelastic neutron scattering and first-principles calculations, we investigate a magnesium borohydride framework that has small pores and a partially negatively charged non-flat interior for hydrogen and nitrogen uptake. Hydrogen and nitrogen occupy distinctly different adsorption sites in the pores, with very different limiting capacities of 2.33 H2 and 0.66 N2 per Mg(BH4)2. Molecular hydrogen is packed extremely densely, with about twice the density of liquid hydrogen (144 g H2 per litre of pore volume). We found a penta-dihydrogen cluster where H2 molecules in one position have rotational freedom, whereas H2 molecules in another position have a well-defined orientation and a directional interaction with the framework. This study reveals that densely packed hydrogen can be stabilized in small-pore materials at ambient pressures.

4.
ACS Catal ; 14(3): 1480-1493, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38327647

RESUMEN

Strong adsorption of ketone and diketone byproducts and their fragmentation products during the aqueous phase reforming of biomass derived oxygenates is believed to be responsible for the deactivation of supported Pt catalysts. This study involves a combined experimental and theoretical approach to demonstrate the interactions of several model di/ketone poisons with Pt/γ-Al2O3 catalysts. Particular di/ketones were selected to reveal the effects of hydroxyl groups (acetone, hydroxyacetone), conjugation with C=C bonds (mesityl oxide), intramolecular distance between carbonyls in diketones (2,3-butanedione, 2,4-pentanedione), and length of terminal alkyl chains (3,4-hexanedione). The formation of adsorbed carbon monoxide (1900-2100 cm-1) as a decarbonylation product was probed using infrared spectroscopy and to calculate the extent of poisoning during subsequent methanol dehydrogenation based on the reduction of the ν(C≡O) band integral relative to experiments in which only methanol was dosed. Small Pt particles appeared less active in decarbonylation and were perhaps poisoned by strongly adsorbed di/ketones on undercoordinated metal sites and bulky conjugated species formed on the γ-Al2O3 support from aldol self-condensation. Larger Pt particles were more resistant to di/ketone poisoning due to higher decarbonylation activity yet still fell short of the expected yield of adsorbed CO from subsequent methanol activity. Vibrational spectra acquired using inelastic neutron scattering showed evidence for strongly binding methyl and acyl groups resulting from di/ketone decarbonylation on a Pt sponge at 250 °C. Adsorption energies and molecular configurations were obtained for di/ketones on a Pt(111) slab using density functional theory, revealing potential descriptors for predicting decarbonylation activity on highly coordinated metal sites. Calculated reaction energies suggest it is energetically favorable to reform surface methyl groups into adsorbed CO and H. However, the rate of this surface reaction is limited by a high activation barrier indicating that either improved APR catalyst designs or regeneration procedures may be necessary.

5.
J Phys Chem Lett ; 15(5): 1188-1194, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38270396

RESUMEN

Singlet fission (SF) is the process of converting an excited singlet to a pair of excited triplets. Harvesting two charges from a single photon has the potential to increase photovoltaic device efficiencies. Acenes, such as tetracene and pentacene, are model molecules for studying SF. Despite SF being an endoergic process for tetracene and exoergic for pentacene, both acenes exhibit near unity SF quantum efficiencies, raising questions about how tetracene can overcome the energy barrier. Here, we use recently developed instrumentation to measure inelastic neutron scattering (INS) while optically exciting the model molecules using two different excitation energies. The spectroscopic results reveal intermolecular structural relaxation due to the presence of a triplet excited state. The structural dynamics of the combined excited state molecule and surrounding tetracene molecules are further studied using time-dependent density functional theory (TD-DFT), which shows that the singlet and triplet levels shift due to the excited state geometry, reducing the uphill energy barrier for SF to within kT.

6.
Angew Chem Int Ed Engl ; 63(6): e202315280, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38088497

RESUMEN

We report the first experimental evidence for rapid formation of hydrogen clathrates under mild pressure and temperature conditions within the cavities of a zirconium-metalloporphyrin framework, specifically PCN-222. PCN-222 has been selected for its 1D mesoporous channels, high water-stability, and proper hydrophilic behavior. Firstly, we optimize a microwave (MW)-assisted method for the synthesis of nanosized PCN-222 particles with precise structure control (exceptional homogeneity in morphology and crystalline phase purity), taking advantage of MW in terms of rapid/homogeneous heating, time and energy savings, as well as potential scalability of the synthetic method. Second, we explore the relevance of the large mesoporous 1D open channels within the PCN-222 to promote the nucleation and growth of confined hydrogen clathrates. Experimental results show that PCN-222 drives the nucleation process at a lower pressure than the bulk system (1.35 kbar vs 2 kbar), with fast kinetics (minutes), using pure water, and with a nearly complete water-to-hydrate conversion. Unfortunately, PCN-222 cannot withstand these high pressures, which lead to a significant alteration of the mesoporous structure while the microporous network remains mainly unchanged.

7.
Angew Chem Int Ed Engl ; 63(1): e202313389, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37906130

RESUMEN

Tuning the anionic site of catalyst supports can impact reaction pathways by creating active sites on the support or influencing metal-support interactions when using supported metal nanoparticles. This study focuses on CO2 hydrogenation over supported Cu nanoparticles, revealing a 3-fold increase in methanol yield when replacing oxygen anions with hydrides in the perovskite support (Cu/BaTiO2.8 H0.2 yields ~146 mg/h/gCu vs. Cu/BaTiO3 yields ~50 mg/h/gCu). The contrast suggests that significant roles are played by the support hydrides in the reaction. Temperature programmed reaction and isotopic labelling studies indicate that BaTiO2.8 H0.2 surface hydride species follow a Mars van Krevelen mechanism in CO2 hydrogenation, promoting methanol production. High-pressure steady-state isotopic transient kinetic analysis (SSITKA) studies suggest that Cu/BaTiO2.8 H0.2 possesses both a higher density and more active and selective sites for methanol production compared to Cu/BaTiO3 . An operando high-pressure diffuse reflectance infrared spectroscopy (DRIFTS)-SSITKA study shows that formate species are the major surface intermediates over both catalysts, and the subsequent hydrogenation steps of formate are likely rate-limiting. However, the catalytic reactivity of Cu/BaTiO2.8 H0.2 towards the formate species is much higher than Cu/BaTiO3 , likely due to the altered electronic structure of interface Cu sites by the hydrides in the support as validated by density functional theory (DFT) calculations.

8.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065149

RESUMEN

Beamlines are facilities that produce and deliver highly focused and intense beams of radiation, typically x rays, synchrotron radiation, or neutrons, for scientific research purposes. Millions of dollars are spent annually to maintain and operate these scientific beamlines, oftentimes running continuously between cycles. To reduce human intervention and improve productivity, mechanical sample changers are often commissioned for use. Designing sample changers is difficult because mechanical parts can be bulky, expensive, and challenging to design for instruments with low volume access, high radiation, and cryogenic environments. We present a portable and inexpensive sample changer stick that can hold and manipulate up to four samples, specifically designed for use with cryogenic closed-cycle refrigerators. The sample changer stick enables rapid and efficient exchange of samples without manual intervention, and is compatible with standard sample mounts such as vanadium cans. The sample changer stick includes a motorized rotation and lancing mechanism, which enables the precise positioning of each sample in the neutron beam, while ensuring compatibility with the operating temperatures and vacuum conditions required for closed-cycle refrigerators. The design has been successfully tested at the VISION beamline at the Spallation Neutron Source. The mechanical action and software controls are detailed. The sample changer stick is a valuable tool for scientists working with cryogenic closed-cycle refrigerators.

9.
Inorg Chem ; 62(40): 16464-16474, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37747902

RESUMEN

α-Sb2O4 (cervantite) and ß-Sb2O4 (clinocervantite) are mixed valence compounds with equal proportions of SbIII and SbV as represented in the formula SbIIISbVO4. Their structure and properties can be difficult to calculate owing to the SbIII lone-pair electrons. Here, we present a study of the lattice dynamics and vibrational properties using a combination of inelastic neutron scattering, Mössbauer spectroscopy, nuclear inelastic scattering, and density functional theory (DFT) calculations. DFT calculations that account for lone-pair electrons match the experimental densities of phonon states. Mössbauer spectroscopy reveals the ß phase to be significantly harder than the α phase. Calculations with O vacancies reveal the possibility for nonstoichiometric proportions of SbIII and SbV in both phases. An open question is what drives the stability of the α phase over the ß phase, as the latter shows pronounced kinetic stability and lower symmetry despite being in the high-temperature phase. Since the vibrational entropy difference is small, it is unlikely to stabilize the α phase. Our results suggest that the α phase is more stable only because the material is not fully stoichiometric.

10.
J Am Chem Soc ; 145(38): 20792-20800, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37722104

RESUMEN

Conversion of methane (CH4) to ethylene (C2H4) and/or acetylene (C2H2) enables routes to a wide range of products directly from natural gas. However, high reaction temperatures and pressures are often required to activate and convert CH4 controllably, and separating C2+ products from unreacted CH4 can be challenging. Here, we report the direct conversion of CH4 to C2H4 and C2H2 driven by non-thermal plasma under ambient (25 °C and 1 atm) and flow conditions over a metal-organic framework material, MFM-300(Fe). The selectivity for the formation of C2H4 and C2H2 reaches 96% with a high time yield of 334 µmol gcat-1 h-1. At a conversion of 10%, the selectivity to C2+ hydrocarbons and time yield exceed 98% and 2056 µmol gcat-1 h-1, respectively, representing a new benchmark for conversion of CH4. In situ neutron powder diffraction, inelastic neutron scattering and solid-state nuclear magnetic resonance, electron paramagnetic resonance (EPR), and diffuse reflectance infrared Fourier transform spectroscopies, coupled with modeling studies, reveal the crucial role of Fe-O(H)-Fe sites in activating CH4 and stabilizing reaction intermediates via the formation of an Fe-O(CH3)-Fe adduct. In addition, a cascade fixed-bed system has been developed to achieve online separation of C2H4 and C2H2 from unreacted CH4 for direct use. Integrating the processes of CH4 activation, conversion, and product separation within one system opens a new avenue for natural gas utility, bridging the gap between fundamental studies and practical applications in this area.

11.
Nat Commun ; 14(1): 5454, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673921

RESUMEN

Haldane topological materials contain unique antiferromagnetic chains with symmetry-protected energy gaps. Such materials have potential applications in spintronics and future quantum computers. Haldane topological solids typically consist of spin-1 chains embedded in extended three-dimensional (3D) crystal structures. Here, we demonstrate that [Ni(µ-4,4'-bipyridine)(µ-oxalate)]n (NiBO) instead adopts a two-dimensional (2D) metal-organic framework (MOF) structure of Ni2+ spin-1 chains weakly linked by 4,4'-bipyridine. NiBO exhibits Haldane topological properties with a gap between the singlet ground state and the triplet excited state. The latter is split by weak axial and rhombic anisotropies. Several experimental probes, including single-crystal X-ray diffraction, variable-temperature powder neutron diffraction (VT-PND), VT inelastic neutron scattering (VT-INS), DC susceptibility and specific heat measurements, high-field electron spin resonance, and unbiased quantum Monte Carlo simulations, provide a detailed, comprehensive characterization of NiBO. Vibrational (also known as phonon) properties of NiBO have been probed by INS and density-functional theory (DFT) calculations, indicating the absence of phonons near magnetic excitations in NiBO, suppressing spin-phonon coupling. The work here demonstrates that NiBO is indeed a rare 2D-MOF Haldane topological material.

12.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37540123

RESUMEN

Every material experiences atomic and molecular motions that are generally termed vibrations in gases and liquids or phonons in solid state materials. Optical spectroscopy techniques, such as Raman, infrared absorption spectroscopy, or inelastic neutron scattering (INS), can be used to measure the vibrational/phonon spectrum of ground state materials properties. A variety of optical pump probe spectroscopies enable the measurement of excited states or elucidate photochemical reaction pathways and kinetics. So far, it has not been possible to study photoactive materials or processes in situ using INS due to the mismatch between neutron and photon penetration depths, differences between the flux density of photons and neutrons, cryogenic temperatures for INS measurements, vacuum conditions, and a lack of optical access to the sample space. These experimental hurdles have resulted in very limited photochemistry studies using INS. Here we report on the design of two different photochemistry sample sticks that overcome these experimental hurdles to enable in situ photochemical studies using INS, specifically at the VISION instrument at Oak Ridge National Laboratory. We demonstrate the use of these new measurement capabilities through (1) the in situ photodimerization of anthracene and (2) the in situ photopolymerization of a 405 nm photoresin using 405 nm excitation as simple test cases. These new measurement apparatus broaden the science enabled by INS to include photoactive materials, optically excited states, and photoinitiated reactions.

13.
Phys Chem Chem Phys ; 25(21): 14981-14991, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37211856

RESUMEN

From crystalline tetrahydrofuran clathrate hydrate, THF-CH (THF·17H2O, cubic structure II), three distinct polyamorphs can be derived. First, THF-CH undergoes pressure-induced amorphization when pressurized to 1.3 GPa in the temperature range 77-140 K to a form which, in analogy to pure ice, may be called high-density amorphous (HDA). Second, HDA can be converted to a densified form, VHDA, upon heat-cycling at 1.8 GPa to 180 K. Decompression of VHDA to atmospheric pressure below 130 K produces the third form, recovered amorphous (RA). Results from neutron scattering experiments and molecular dynamics simulations provide a generalized picture of the structure of amorphous THF hydrates with respect to crystalline THF-CH and liquid THF·17H2O solution (∼2.5 M). Although fully amorphous, HDA is heterogeneous with two length scales for water-water correlations (less dense local water structure) and guest-water correlations (denser THF hydration structure). The hydration structure of THF is influenced by guest-host hydrogen bonding. THF molecules maintain a quasiregular array, reminiscent of the crystalline state, and their hydration structure (out to 5 Å) constitutes ∼23H2O. The local water structure in HDA is reminiscent of pure HDA-ice featuring 5-coordinated H2O. In VHDA, the hydration structure of HDA is maintained but the local water structure is densified and resembles pure VHDA-ice with 6-coordinated H2O. The hydration structure of THF in RA constitutes ∼18 H2O molecules and the water structure corresponds to a strictly 4-coordinated network, as in the liquid. Both VHDA and RA can be considered as homogeneous.

14.
Angew Chem Int Ed Engl ; 62(28): e202302602, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37027005

RESUMEN

We report the modulation of reactivity of nitrogen dioxide (NO2 ) in a charged metal-organic framework (MOF) material, MFM-305-CH3 in which unbound N-centres are methylated and the cationic charge counter-balanced by Cl- ions in the pores. Uptake of NO2 into MFM-305-CH3 leads to reaction between NO2 and Cl- to give nitrosyl chloride (NOCl) and NO3 - anions. A high dynamic uptake of 6.58 mmol g-1 at 298 K is observed for MFM-305-CH3 as measured using a flow of 500 ppm NO2 in He. In contrast, the analogous neutral material, MFM-305, shows a much lower uptake of 2.38 mmol g-1 . The binding domains and reactivity of adsorbed NO2 molecules within MFM-305-CH3 and MFM-305 have been probed using in situ synchrotron X-ray diffraction, inelastic neutron scattering and by electron paramagnetic resonance, high-field solid-state nuclear magnetic resonance and UV/Vis spectroscopies. The design of charged porous sorbents provides a new platform to control the reactivity of corrosive air pollutants.

15.
Nat Commun ; 14(1): 1197, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864084

RESUMEN

Olefin/paraffin separation is an important but challenging and energy-intensive process in petrochemical industry. The realization of carbons with size-exclusion capability is highly desirable but rarely reported. Herein, we report polydopamine-derived carbons (PDA-Cx, where x refers to the pyrolysis temperature) with tailorable sub-5 Å micropore orifices together with larger microvoids by one-step pyrolysis. The sub-5 Å micropore orifices centered at 4.1-4.3 Å in PDA-C800 and 3.7-4.0 Å in PDA-C900 allow the entry of olefins while entirely excluding their paraffin counterparts, performing a precise cut-off to discriminate olefin/paraffin with sub-angstrom discrepancy. The larger voids enable high C2H4 and C3H6 capacities of 2.25 and 1.98 mmol g-1 under ambient conditions, respectively. Breakthrough experiments confirm that a one-step adsorption-desorption process can obtain high-purity olefins. Inelastic neutron scattering further reveals the host-guest interaction of adsorbed C2H4 and C3H6 molecules in PDA-Cx. This study opens an avenue to exploit the sub-5 Å micropores in carbon and their desirable size-exclusion effect.

16.
Mater Horiz ; 10(1): 187-196, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36330997

RESUMEN

Metal organic frameworks (MOFs) that incorporate metal oxide cluster nodes, exemplified by UiO-66, have been widely studied, especially in terms of their deviations from the ideal, defect-free crystalline structures. Although defects such as missing linkers, missing nodes, and the presence of adventitious synthesis-derived node ligands (such as acetates and formates) have been proposed, their exact structures remain unknown. Previously, it was demonstrated that defects are correlated and span multiple unit cells. The highly specialized techniques used in these studies are not easily applicable to other MOFs. Thus, there is a need to develop new experimental and computational approaches to understand the structure and properties of defects in a wider variety of MOFs. Here, we show how low-frequency phonon modes measured by inelastic neutron scattering (INS) spectroscopy can be combined with density functional theory (DFT) simulations to provide unprecedented insights into the defect structure of UiO-66. We are able to identify and assign peaks in the fingerprint region (<100 cm-1) which correspond to phonon modes only present in certain defective topologies. Specifically, this analysis suggests that our sample of UiO-66 consists of predominantly defect-free fcu regions with smaller domains corresponding to a defective bcu topology with 4 and 2 acetate ligands bound to the Zr6O8 nodes. Importantly, the INS/DFT approach provides detailed structural insights (e.g., relative positions and numbers of acetate ligands) that are not accessible with microscopy-based techniques. The quantitative agreement between DFT simulations and the experimental INS spectrum combined with the relative simplicity of sample preparation, suggests that this methodology may become part of the standard and preferred protocol for the characterization of MOFs, and, in particular, for elucidating the structure defects in these materials.

17.
Phys Chem Chem Phys ; 25(1): 590-603, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36484338

RESUMEN

Understanding the role that the surface of a material plays in the mediation of a chemical reaction at the atomic level is paramount to the optimization and improvement of catalytic materials. While this area of research has matured over several decades, few techniques are sensitive enough to directly examine and differentiate the behavior of molecular adsorbates during the course of the chemical reaction with a substrate. In this study, a combined approach which involves structural characterization techniques, volumetric adsorption, temperature programmed desorption, and inelastic neutron scattering (INS) was used to investigate the mechanism of ethanol dehydration on the surface of transition phase aluminas. The alumina samples employed were extensively characterized using X-ray diffraction, solid-state 27Al nuclear magnetic resonance spectroscopy, and thermogravimetric analysis with differential scanning calorimetry. A high-precision volumetric adsorption apparatus was used to characterize the surface area and to controllably dose ethanol onto the surface of the aluminas. A modified temperature programmed desorption (TPD) method which samples the molecular composition of the vapor at discrete temperatures in a closed cell is described. INS results were used to confirm adsorption of ethanol on γ- and θ-alumina and show the reaction of ethanol and subsequent formation of ethylene as a function of temperature. The TPD and INS results affirm that the dehydration reaction and subsequent formation of ethylene on both γ- and θ-aluminas occur rapidly at 300 °C, though ethanol is still observed on θ-alumina indicating fewer active sites. These results demonstrate the value of a multi-faceted characterization approach, featuring INS, towards providing a detailed understanding of the ethanol dehydration mechanism on θ-alumina and further provide the basis for extending this approach to other systems in heterogeneous catalysis and areas where molecule-substrate interactions are poorly understood.

18.
Nat Commun ; 13(1): 5953, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216832

RESUMEN

Clathrate hydrates are crystalline solids characterized by their ability to accommodate large quantities of guest molecules. Although CH4 and CO2 are the traditional guests found in natural systems, incorporating smaller molecules (e.g., H2) is challenging due to the need to apply higher pressures to stabilize the hydrogen-bonded network. Another critical limitation of hydrates is the slow nucleation and growth kinetics. Here, we show that specially designed activated carbon materials can surpass these obstacles by acting as nanoreactors promoting the nucleation and growth of H2 hydrates. The confinement effects in the inner cavities promote the massive growth of hydrogen hydrates at moderate temperatures, using pure water, with extremely fast kinetics and much lower pressures than the bulk system.

19.
J Am Chem Soc ; 144(41): 18967-18975, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36198137

RESUMEN

Increasing levels of air pollution are driving the need for the development of new processes that take "waste-to-chemicals". Herein, we report the capture and conversion under ambient conditions of a major air pollutant, NO2, using a robust metal-organic framework (MOF) material, Zr-bptc (H4bptc = 3,3',5,5'-biphenyltetracarboxylic acid), comprising {Zr6(µ3-O)4(µ3-OH)4(COO)12} clusters linked by 4-connected bptc4- ligands in an ftw topology. At 298 K, Zr-bptc shows exceptional stability and adsorption of NO2 at both low (4.9 mmol g-1 at 10 mbar) and high pressures (13.8 mmol g-1 at 1.0 bar), as measured by isotherm experiments. Dynamic breakthrough experiments have confirmed the selective retention of NO2 by Zr-bptc at low concentrations under both dry and wet conditions. The immobilized NO2 can be readily transformed into valuable nitro compounds relevant to construction, agrochemical, and pharmaceutical industries. In situ crystallographic and spectroscopic studies reveal strong binding interactions of NO2 to the {Zr6(µ3-O)4(µ3-OH)4(COO)12} cluster node. This study paves a circular pathway to enable the integration of nitrogen-based air pollutants into the production of fine chemicals.


Asunto(s)
Contaminantes Atmosféricos , Estructuras Metalorgánicas , Dióxido de Nitrógeno , Estructuras Metalorgánicas/química , Nitrocompuestos , Ligandos , Contaminantes Atmosféricos/análisis , Agroquímicos , Nitrógeno
20.
J Phys Chem A ; 126(41): 7491-7501, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36201680

RESUMEN

Recent interest in emerging processes for polymer manufacturing and bio-based chemistries for direct chemical recycling/upcycling has motivated new research focused on a deeper understanding of atomic-scale polymer properties and how they influence macroscopic phenomena. Uncovering the fundamental properties of polymers that give rise to macroscopic behavior could enable new pathways for improved recyclability or utilization of alternative "greener" polymer analogues. In this study, the neutron vibrational spectrum was measured for a film of biaxially oriented polyethylene terephthalate (BoPET) using inelastic neutron scattering (INS), to investigate the relationship between the structure and dynamics of a widely used polymer. Compared to conventional spectroscopic techniques, the use of INS is advantageous for polymeric materials due to the absence of selection rules (i.e., all transitions are allowed), broad-band energy range, and considerable sensitivity to hydrogen modes. In order to distinguish the vibrational modes caused by trans and gauche rotational isomerism, the normal modes of vibration were calculated from a density functional theory-optimized structure of crystalline PET (cPET), representative of the all-trans state, and compared with INS from "highly crystalline" PET powder. Although in- and out-of-plane wagging of hydrogens on the ring structure exhibit significant contribution to both BoPET and cPET spectra, the wagging, rocking, and twisting modes of hydrogen on the ethylene glycol group are, in most cases, conformation-specific. These results were further rationalized by investigating the role of hyperconjugation in stabilizing both conformations using the natural bond order method. Through comparison of experimental and calculated INS results, this work provides the fundamental basis for discovering the role of structure and dynamics in shaping the macroscopic properties of PET and polymer analogues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...