Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37131604

RESUMEN

We present the nELISA, a high-throughput, high-fidelity, and high-plex protein profiling platform. DNA oligonucleotides are used to pre-assemble antibody pairs on spectrally encoded microparticles and perform displacement-mediated detection. Spatial separation between non-cognate antibodies prevents the rise of reagent-driven cross-reactivity, while read-out is performed cost-efficiently and at high-throughput using flow cytometry. We assembled an inflammatory panel of 191 targets that were multiplexed without cross-reactivity or impact on performance vs 1-plex signals, with sensitivities as low as 0.1pg/mL and measurements spanning 7 orders of magnitude. We then performed a large-scale secretome perturbation screen of peripheral blood mononuclear cells (PBMCs), with cytokines as both perturbagens and read-outs, measuring 7,392 samples and generating ~1.5M protein datapoints in under a week, a significant advance in throughput compared to other highly multiplexed immunoassays. We uncovered 447 significant cytokine responses, including multiple putatively novel ones, that were conserved across donors and stimulation conditions. We also validated the nELISA's use in phenotypic screening, and propose its application to drug discovery.

2.
Nat Nanotechnol ; 13(10): 925-932, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30061659

RESUMEN

Quantitative models of Förster resonance energy transfer (FRET)-pioneered by Förster-define our understanding of FRET and underpin its widespread use. However, multicolour FRET (mFRET), which arises between multiple, stochastically distributed fluorophores, lacks a mechanistic model and remains intractable. mFRET notably arises in fluorescently barcoded microparticles, resulting in a complex, non-orthogonal fluorescence response that impedes their encoding and decoding. Here, we introduce an ensemble mFRET (emFRET) model, and apply it to guide barcoding into regimes with extreme FRET. We further introduce a facile, proportional multicolour labelling method using oligonucleotides as homogeneous linkers. A total of 580 barcodes were rapidly designed and validated using four dyes-with FRET efficiencies reaching 76%-and used for multiplexed immunoassays with cytometric readout and fully automated decoding. The emFRET model helps to expand the barcoding capacity of barcoded microparticles using common organic dyes and will benefit other applications subject to stochastic mFRET.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...