Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Oncol ; 60(4)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35234266

RESUMEN

Melanoma continues to be the most aggressive and devastating form of skin cancer for which the development of novel therapies is required. The present study aimed to determine the effects of antagonism of the transient receptor potential melastatin­2 (TRPM2) ion channel in primary human malignant melanoma cells. TRPM2 antagonism via use of the antifungal agent, clotrimazole, led to decreases in cell proliferation, as well as dose­dependent increases in cell death in all melanoma cell lines investigated. The targeting of TRPM2 channels was verified using TRPM2 knockdown, where treatment with TRPM2 small­interfering RNA led to similar levels of cell death in all melanoma cell lines when compared with clotrimazole treatment. Minimal effects on proliferation and cell death were observed following antagonism or knockdown of TRPM2 in non­cancerous human keratinocytes. Moreover, characteristics of TRPM2 were explored in these melanoma cells and the results demonstrated that TRPM2, localized to the plasma membrane as a non­specific ion channel in non­cancerous cells, displayed a nuclear localization in all human melanoma cell lines analyzed. Additional characterization of these melanoma cell lines confirmed that each expressed one or more established multidrug resistance genes. Results of the present study therefore indicated that antagonism of the TRPM2 channel led to antitumor effects in human melanoma cells, including those that are potentially unresponsive to current treatments due to the expression of drug resistance genes. The unique cellular localization of TRPM2 and the specificity of the antitumor effects elicited by TRPM2 antagonism suggested that TRPM2 possesses a unique role in melanoma cells. Collectively, the targeting of TRPM2 represents a potentially novel, efficacious and readily accessible treatment option for patients with melanoma.


Asunto(s)
Línea Celular Tumoral/metabolismo , Melanoma/genética , Melanoma/prevención & control , Canales Catiónicos TRPM/antagonistas & inhibidores , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral/fisiología , Proliferación Celular/efectos de los fármacos , Humanos , Melanoma/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...