Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Circulation ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38939955

RESUMEN

BACKGROUND: Despite major advances in the clinical management of long QT syndrome, some patients are not fully protected by beta-blocker therapy. Mexiletine is a well-known sodium channel blocker, with proven efficacy in patients with sodium channel-mediated long QT syndrome type 3. Our aim was to evaluate the efficacy of mexiletine in long QT syndrome type 2 (LQT2) using cardiomyocytes derived from patient-specific human induced pluripotent stem cells, a transgenic LQT2 rabbit model, and patients with LQT2. METHODS: Heart rate-corrected field potential duration, a surrogate for QTc, was measured in human induced pluripotent stem cells from 2 patients with LQT2 (KCNH2-p.A561V, KCNH2-p.R366X) before and after mexiletine using a multiwell multi-electrode array system. Action potential duration at 90% repolarization (APD90) was evaluated in cardiomyocytes isolated from transgenic LQT2 rabbits (KCNH2-p.G628S) at baseline and after mexiletine application. Mexiletine was given to 96 patients with LQT2. Patients were defined as responders in the presence of a QTc shortening ≥40 ms. Antiarrhythmic efficacy of mexiletine was evaluated by a Poisson regression model. RESULTS: After acute treatment with mexiletine, human induced pluripotent stem cells from both patients with LQT2 showed a significant shortening of heart rate-corrected field potential duration compared with dimethyl sulfoxide control. In cardiomyocytes isolated from LQT2 rabbits, acute mexiletine significantly shortened APD90 (∆APD shortening 113 ms), indicating a strong mexiletine-mediated shortening across different LQT2 model systems. Mexiletine was given to 96 patients with LQT2 either chronically (n=60) or after the acute oral drug test (n=36): 65% of the patients taking mexiletine only chronically and 75% of the patients who performed the acute oral test were responders. There was a significant correlation between basal QTc and ∆QTc during the test (r= -0.8; P<0.001). The oral drug test correctly predicted long-term effect in 93% of the patients. Mexiletine reduced the mean yearly event rate from 0.10 (95% CI, 0.07-0.14) to 0.04 (95% CI, 0.02-0.08), with an incidence rate ratio of 0.40 (95% CI, 0.16-0.84), reflecting a 60% reduction in the event rate (P=0.01). CONCLUSIONS: Mexiletine significantly shortens cardiac repolarization in LQT2 human induced pluripotent stem cells, in the LQT2 rabbit model, and in the majority of patients with LQT2. Furthermore, mexiletine showed antiarrhythmic efficacy. Mexiletine should therefore be considered a valid therapeutic option to be added to conventional therapies in higher-risk patients with LQT2.

3.
Eur Heart J ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38751064

RESUMEN

BACKGROUND AND AIMS: Risk scores are proposed for genetic arrhythmias. Having proposed in 2010 one such score (M-FACT) for the long QT syndrome (LQTS), this study aims to test whether adherence to its suggestions would be appropriate. METHODS: LQT1/2/3 and genotype-negative patients without aborted cardiac arrest (ACA) before diagnosis or cardiac events (CEs) below age 1 were included in the study, focusing on an M-FACT score ≥2 (intermediate/high risk), either at presentation (static) or during follow-up (dynamic), previously associated with 40% risk of implantable cardioverter defibrillator (ICD) shocks within 4 years. RESULTS: Overall, 946 patients (26 ± 19 years at diagnosis, 51% female) were included. Beta-blocker (ßB) therapy in 94% of them reduced the rate of those with a QTc ≥500 ms from 18% to 12% (P < .001). During 7 ± 6 years of follow-up, none died; 4% had CEs, including 0.4% with ACA. A static M-FACT ≥2 was present in 110 patients, of whom 106 received ßBs. In 49/106 patients with persistent dynamic M-FACT ≥2, further therapeutic optimization (left cardiac sympathetic denervation in 55%, mexiletine in 31%, and ICD at 27%) resulted in just 7 (14%) patients with CEs (no ACA), with no CEs in the remaining 57. Additionally, 32 patients developed a dynamic M-FACT ≥2 but, after therapeutic optimization, only 3 (9%) had CEs. According to an M-FACT score ≥2, a total of 142 patients should have received an ICD, but only 22/142 (15%) were implanted, with shocks reported in 3. CONCLUSIONS: Beta-blockers often shorten QTc, thus changing risk scores and ICD indications for primary prevention. Yearly risk reassessment with therapy optimization leads to fewer ICD implants (3%) without increasing life-threatening events.

4.
Eur Heart J ; 45(14): 1255-1265, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38445836

RESUMEN

BACKGROUND AND AIMS: Available data on continuous rhythm monitoring by implantable loop recorders (ILRs) in patients with Brugada syndrome (BrS) are scarce. The aim of this multi-centre study was to evaluate the diagnostic yield and clinical implication of a continuous rhythm monitoring strategy by ILRs in a large cohort of BrS patients and to assess the precise arrhythmic cause of syncopal episodes. METHODS: A total of 370 patients with BrS and ILRs (mean age 43.5 ± 15.9, 33.8% female, 74.1% symptomatic) from 18 international centers were included. Patients were followed with continuous rhythm monitoring for a median follow-up of 3 years. RESULTS: During follow-up, an arrhythmic event was recorded in 30.7% of symptomatic patients [18.6% atrial arrhythmias (AAs), 10.2% bradyarrhythmias (BAs), and 7.3% ventricular arrhythmias (VAs)]. In patients with recurrent syncope, the aetiology was arrhythmic in 22.4% (59.3% BAs, 25.0% VAs, and 15.6% AAs). The ILR led to drug therapy initiation in 11.4%, ablation procedure in 10.9%, implantation of a pacemaker in 2.5%, and a cardioverter-defibrillator in 8%. At multivariate analysis, the presence of symptoms [hazard ratio (HR) 2.5, P = .001] and age >50 years (HR 1.7, P = .016) were independent predictors of arrhythmic events, while inducibility of ventricular fibrillation at the electrophysiological study (HR 9.0, P < .001) was a predictor of VAs. CONCLUSIONS: ILR detects arrhythmic events in nearly 30% of symptomatic BrS patients, leading to appropriate therapy in 70% of them. The most commonly detected arrhythmias are AAs and BAs, while VAs are detected only in 7% of cases. Symptom status can be used to guide ILR implantation.


Asunto(s)
Síndrome de Brugada , Desfibriladores Implantables , Marcapaso Artificial , Femenino , Humanos , Masculino , Persona de Mediana Edad , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/diagnóstico , Síndrome de Brugada/complicaciones , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/terapia , Electrocardiografía/métodos , Electrocardiografía Ambulatoria/métodos , Adulto
5.
medRxiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38370760

RESUMEN

Background: Long QT syndrome (LQTS) is a lethal arrhythmia syndrome, frequently caused by rare loss-of-function variants in the potassium channel encoded by KCNH2 . Variant classification is difficult, often owing to lack of functional data. Moreover, variant-based risk stratification is also complicated by heterogenous clinical data and incomplete penetrance. Here, we sought to test whether variant-specific information, primarily from high-throughput functional assays, could improve both classification and cardiac event risk stratification in a large, harmonized cohort of KCNH2 missense variant heterozygotes. Methods: We quantified cell-surface trafficking of 18,796 variants in KCNH2 using a Multiplexed Assay of Variant Effect (MAVE). We recorded KCNH2 current density for 533 variants by automated patch clamping (APC). We calibrated the strength of evidence of MAVE data according to ClinGen guidelines. We deeply phenotyped 1,458 patients with KCNH2 missense variants, including QTc, cardiac event history, and mortality. We correlated variant functional data and Bayesian LQTS penetrance estimates with cohort phenotypes and assessed hazard ratios for cardiac events. Results: Variant MAVE trafficking scores and APC peak tail currents were highly correlated (Spearman Rank-order ρ = 0.69). The MAVE data were found to provide up to pathogenic very strong evidence for severe loss-of-function variants. In the cohort, both functional assays and Bayesian LQTS penetrance estimates were significantly predictive of cardiac events when independently modeled with patient sex and adjusted QT interval (QTc); however, MAVE data became non-significant when peak-tail current and penetrance estimates were also available. The area under the ROC for 20-year event outcomes based on patient-specific sex and QTc (AUC 0.80 [0.76-0.83]) was improved with prospectively available penetrance scores conditioned on MAVE (AUC 0.86 [0.83-0.89]) or attainable APC peak tail current data (AUC 0.84 [0.81-0.88]). Conclusion: High throughput KCNH2 variant MAVE data meaningfully contribute to variant classification at scale while LQTS penetrance estimates and APC peak tail current measurements meaningfully contribute to risk stratification of cardiac events in patients with heterozygous KCNH2 missense variants. Clinical Perspective: What is new?: A two-order of magnitude increase in the set of calibrated functional data for KCNH2 -LQTS is provided by two complementary KCNH2 assays Proactively available variant scores are presented for all possible missense variants by using a LQTS penetrance estimation framework conditioned on high-throughput MAVE dataVariant functional data, in addition to patient features of corrected QT interval and sex, significantly improve modeling of 20-year cardiac event outcomesWhat are the clinical implications?: Readily available MAVE scores for thousands of variants may facilitate classification of new variants discovered in individuals with suspected LQTS Scores and penetrance estimates are readily searchable at variantbrowser.org for community inquiry Both automated patch-clamp data and quantitative LQTS penetrance estimates, conditioned on MAVE data, improve prediction of 20-year cardiac event outcomes in a large cohort of KCNH2 heterozygotes.

7.
Europace ; 25(11)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37975542

RESUMEN

AIMS: In long QT syndrome (LQTS), primary prevention improves outcome; thus, early identification is key. The most common LQTS phenotype is a foetal heart rate (FHR) < 3rd percentile for gestational age (GA) but the effects of cohort, genotype, variant, and maternal ß-blocker therapy on FHR are unknown. We assessed the influence of these factors on FHR in pregnancies with familial LQTS and developed a FHR/GA threshold for LQTS. METHODS AND RESULTS: In an international cohort of pregnancies in which one parent had LQTS, LQTS genotype, familial variant, and maternal ß-blocker effects on FHR were assessed. We developed a testing algorithm for LQTS using FHR and GA as continuous predictors. Data included 1966 FHRs at 7-42 weeks' GA from 267 pregnancies/164 LQTS families [220 LQTS type 1 (LQT1), 35 LQTS type 2 (LQT2), and 12 LQTS type 3 (LQT3)]. The FHRs were significantly lower in LQT1 and LQT2 but not LQT3 or LQTS negative. The LQT1 variants with non-nonsense and severe function loss (current density or ß-adrenergic response) had lower FHR. Maternal ß-blockers potentiated bradycardia in LQT1 and LQT2 but did not affect FHR in LQTS negative. A FHR/GA threshold predicted LQT1 and LQT2 with 74.9% accuracy, 71% sensitivity, and 81% specificity. CONCLUSION: Genotype, LQT1 variant, and maternal ß-blocker therapy affect FHR. A predictive threshold of FHR/GA significantly improves the accuracy, sensitivity, and specificity for LQT1 and LQT2, above the infant's a priori 50% probability. We speculate this model may be useful in screening for LQTS in perinatal subjects without a known LQTS family history.


Asunto(s)
Frecuencia Cardíaca Fetal , Síndrome de QT Prolongado , Lactante , Femenino , Embarazo , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Genotipo , Antagonistas Adrenérgicos beta/efectos adversos , Fenotipo , Electrocardiografía
8.
Eur Heart J ; 44(35): 3357-3370, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37528649

RESUMEN

AIMS: Calmodulinopathy due to mutations in any of the three CALM genes (CALM1-3) causes life-threatening arrhythmia syndromes, especially in young individuals. The International Calmodulinopathy Registry (ICalmR) aims to define and link the increasing complexity of the clinical presentation to the underlying molecular mechanisms. METHODS AND RESULTS: The ICalmR is an international, collaborative, observational study, assembling and analysing clinical and genetic data on CALM-positive patients. The ICalmR has enrolled 140 subjects (median age 10.8 years [interquartile range 5-19]), 97 index cases and 43 family members. CALM-LQTS and CALM-CPVT are the prevalent phenotypes. Primary neurological manifestations, unrelated to post-anoxic sequelae, manifested in 20 patients. Calmodulinopathy remains associated with a high arrhythmic event rate (symptomatic patients, n = 103, 74%). However, compared with the original 2019 cohort, there was a reduced frequency and severity of all cardiac events (61% vs. 85%; P = .001) and sudden death (9% vs. 27%; P = .008). Data on therapy do not allow definitive recommendations. Cardiac structural abnormalities, either cardiomyopathy or congenital heart defects, are present in 30% of patients, mainly CALM-LQTS, and lethal cases of heart failure have occurred. The number of familial cases and of families with strikingly different phenotypes is increasing. CONCLUSION: Calmodulinopathy has pleiotropic presentations, from channelopathy to syndromic forms. Clinical severity ranges from the early onset of life-threatening arrhythmias to the absence of symptoms, and the percentage of milder and familial forms is increasing. There are no hard data to guide therapy, and current management includes pharmacological and surgical antiadrenergic interventions with sodium channel blockers often accompanied by an implantable cardioverter-defibrillator.


Asunto(s)
Calmodulina , Síndrome de QT Prolongado , Taquicardia Ventricular , Niño , Humanos , Calmodulina/genética , Muerte Súbita Cardíaca/etiología , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética , Mutación/genética , Sistema de Registros , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética
9.
Genet Med ; 25(3): 100355, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36496179

RESUMEN

PURPOSE: The congenital Long QT Syndrome (LQTS) and Brugada Syndrome (BrS) are Mendelian autosomal dominant diseases that frequently precipitate fatal cardiac arrhythmias. Incomplete penetrance is a barrier to clinical management of heterozygotes harboring variants in the major implicated disease genes KCNQ1, KCNH2, and SCN5A. We apply and evaluate a Bayesian penetrance estimation strategy that accounts for this phenomenon. METHODS: We generated Bayesian penetrance models for KCNQ1-LQT1 and SCN5A-LQT3 using variant-specific features and clinical data from the literature, international arrhythmia genetic centers, and population controls. We analyzed the distribution of posterior penetrance estimates across 4 genotype-phenotype relationships and compared continuous estimates with ClinVar annotations. Posterior estimates were mapped onto protein structure. RESULTS: Bayesian penetrance estimates of KCNQ1-LQT1 and SCN5A-LQT3 are empirically equivalent to 10 and 5 clinically phenotype heterozygotes, respectively. Posterior penetrance estimates were bimodal for KCNQ1-LQT1 and KCNH2-LQT2, with a higher fraction of missense variants with high penetrance among KCNQ1 variants. There was a wide distribution of variant penetrance estimates among identical ClinVar categories. Structural mapping revealed heterogeneity among "hot spot" regions and featured high penetrance estimates for KCNQ1 variants in contact with calmodulin and the S6 domain. CONCLUSIONS: Bayesian penetrance estimates provide a continuous framework for variant interpretation.


Asunto(s)
Canalopatías , Canal de Potasio KCNQ1 , Humanos , Canal de Potasio KCNQ1/genética , Mutación , Penetrancia , Teorema de Bayes , Canalopatías/genética , Arritmias Cardíacas/genética
10.
JACC Clin Electrophysiol ; 8(3): 281-294, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35331422

RESUMEN

OBJECTIVES: This study sought to report our single-center experience with left cardiac sympathetic denervation (LCSD) for long QT syndrome (LQTS) since 1973. BACKGROUND: LCSD is still underutilized because clinicians are often uncertain whether to use it versus an implantable cardioverter-defibrillator (ICD). METHODS: We performed LCSD in 125 patients with LQTS (58% women, mean QT interval corrected for frequency [QTc] 527 ± 60 ms, 90% on beta blockers) with a follow-up of 12.9 ± 10.3 years. They were retrospectively divided into 4 groups according to the clinical/genetic status: very high risk (n = 18, symptomatic in the first year of life or with highly malignant genetics), with aborted cardiac arrest (ACA) (n = 31), with syncope and/or ICD shocks on beta blockers (n = 45), in primary prevention (n = 31). RESULTS: After LCSD, 17% in the very high risk group remained asymptomatic, compared with 52%, 47%, and 97% in the other 3 groups (P < 0.0001), with an overall 86% decrease in the mean yearly cardiac event rate (P < 0.0001). Among 45 patients with only syncope/ICD shocks before LCSD, none had ACA/sudden death as first symptom after LCSD and a 6-month post-LCSD QTc <500 ms predicted excellent outcome. Patients with a QTc ≥500 ms have a 50% chance of shortening it by an average of 60 ms. LCSD results are not affected by common genotypes. CONCLUSIONS: We provide definitive evidence for the long-term efficacy of LCSD in LQTS. The degree of antiarrhythmic protection is influenced by patient's specificity and amount of QTc shortening. This novel approach to the analysis of the outcome allows cardiologists to rationally decide and tailor their management strategies to the individual features of their patients.


Asunto(s)
Síndrome de QT Prolongado , Antagonistas Adrenérgicos beta/uso terapéutico , Femenino , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/cirugía , Masculino , Estudios Retrospectivos , Simpatectomía/efectos adversos , Simpatectomía/métodos , Síncope/etiología , Resultado del Tratamiento
11.
Eur Heart J ; 42(46): 4743-4755, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34505893

RESUMEN

AIMS: Mutation type, location, dominant-negative IKs reduction, and possibly loss of cyclic adenosine monophosphate (cAMP)-dependent IKs stimulation via protein kinase A (PKA) influence the clinical severity of long QT syndrome type 1 (LQT1). Given the malignancy of KCNQ1-p.A341V, we assessed whether mutations neighbouring p.A341V in the S6 channel segment could also increase arrhythmic risk. METHODS AND RESULTS: Clinical and genetic data were obtained from 1316 LQT1 patients [450 families, 166 unique KCNQ1 mutations, including 277 p.A341V-positive subjects, 139 patients with p.A341-neighbouring mutations (91 missense, 48 non-missense), and 900 other LQT1 subjects]. A first cardiac event represented the primary endpoint. S6 segment missense variant characteristics, particularly cAMP stimulation responses, were analysed by cellular electrophysiology. p.A341-neighbouring mutation carriers had a QTc shorter than p.A341V carriers (477 ± 33 vs. 490 ± 44 ms) but longer than the remaining LQT1 patient population (467 ± 41 ms) (P < 0.05 for both). Similarly, the frequency of symptomatic subjects in the p.A341-neighbouring subgroup was intermediate between the other two groups (43% vs. 73% vs. 20%; P < 0.001). These differences in clinical severity can be explained, for p.A341V vs. p.A341-neighbouring mutations, by the p.A341V-specific impairment of IKs regulation. The differences between the p.A341-neighbouring subgroup and the rest of LQT1 mutations may be explained by the functional importance of the S6 segment for channel activation. CONCLUSION: KCNQ1 S6 segment mutations surrounding p.A341 increase arrhythmic risk. p.A341V-specific loss of PKA-dependent IKs enhancement correlates with its phenotypic severity. Cellular studies providing further insights into IKs-channel regulation and knowledge of structure-function relationships could improve risk stratification. These findings impact on clinical management.


Asunto(s)
Síndrome de Romano-Ward , Humanos , Canal de Potasio KCNQ1/genética , Mutación , Mutación Missense , Síndrome de Romano-Ward/genética
12.
Circ Genom Precis Med ; 14(4): e003289, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34309407

RESUMEN

BACKGROUND: The proliferation of genetic profiling has revealed many associations between genetic variations and disease. However, large-scale phenotyping efforts in largely healthy populations, coupled with DNA sequencing, suggest variants currently annotated as pathogenic are more common in healthy populations than previously thought. In addition, novel and rare variants are frequently observed in genes associated with disease both in healthy individuals and those under suspicion of disease. This raises the question of whether these variants can be useful predictors of disease. To answer this question, we assessed the degree to which the presence of a variant in the cardiac potassium channel gene KCNH2 was diagnostically predictive for the autosomal dominant long QT syndrome. METHODS: We estimated the probability of a long QT diagnosis given the presence of each KCNH2 variant using Bayesian methods that incorporated variant features such as changes in variant function, protein structure, and in silico predictions. We call this estimate the posttest probability of disease. Our method was applied to over 4000 individuals heterozygous for 871 missense or in-frame insertion/deletion variants in KCNH2 and validated against a separate international cohort of 933 individuals heterozygous for 266 missense or in-frame insertion/deletion variants. RESULTS: Our method was well-calibrated for the observed fraction of heterozygotes diagnosed with long QT syndrome. Heuristically, we found that the innate diagnostic information one learns about a variant from 3-dimensional variant location, in vitro functional data, and in silico predictors is equivalent to the diagnostic information one learns about that same variant by clinically phenotyping 10 heterozygotes. Most importantly, these data can be obtained in the absence of any clinical observations. CONCLUSIONS: We show how variant-specific features can inform a prior probability of disease for rare variants even in the absence of clinically phenotyped heterozygotes.


Asunto(s)
Canal de Potasio ERG1 , Heterocigoto , Mutación INDEL , Síndrome de QT Prolongado , Mutación Missense , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética
13.
Genet Med ; 23(1): 47-58, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32893267

RESUMEN

PURPOSE: Stringent variant interpretation guidelines can lead to high rates of variants of uncertain significance (VUS) for genetically heterogeneous disease like long QT syndrome (LQTS) and Brugada syndrome (BrS). Quantitative and disease-specific customization of American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines can address this false negative rate. METHODS: We compared rare variant frequencies from 1847 LQTS (KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the International LQTS/BrS Genetics Consortia to population-specific gnomAD data and developed disease-specific criteria for ACMG/AMP evidence classes-rarity (PM2/BS1 rules) and case enrichment of individual (PS4) and domain-specific (PM1) variants. RESULTS: Rare SCN5A variant prevalence differed between European (20.8%) and Japanese (8.9%) BrS patients (p = 5.7 × 10-18) and diagnosis with spontaneous (28.7%) versus induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p = 1.3 × 10-13). Ion channel transmembrane regions and specific N-terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains were characterized by high enrichment of case variants and >95% probability of pathogenicity. Applying the customized rules, 17.4% of European BrS and 74.8% of European LQTS cases had (likely) pathogenic variants, compared with estimated diagnostic yields (case excess over gnomAD) of 19.2%/82.1%, reducing VUS prevalence to close to background rare variant frequency. CONCLUSION: Large case-control data sets enable quantitative implementation of ACMG/AMP guidelines and increased sensitivity for inherited arrhythmia genetic testing.


Asunto(s)
Síndrome de Brugada , Síndrome de QT Prolongado , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/epidemiología , Arritmias Cardíacas/genética , Síndrome de Brugada/genética , Pruebas Genéticas , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/epidemiología , Síndrome de QT Prolongado/genética , Mutación , Regulación de la Población
14.
Circ Genom Precis Med ; 13(6): e002911, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33164571

RESUMEN

BACKGROUND: Brugada syndrome (BrS) is characterized by the type 1 Brugada ECG pattern. Pathogenic rare variants in SCN5A (mutations) are identified in 20% of BrS families in whom incomplete penetrance and genotype-negative phenotype-positive individuals are observed. E1784K-SCN5A is the most common SCN5A mutation identified. We determined the association of a BrS genetic risk score (BrS-GRS) and SCN5A mutation type on BrS phenotype in BrS families with SCN5A mutations. METHODS: Subjects with a spontaneous type 1 pattern or positive/negative drug challenge from cohorts harboring SCN5A mutations were recruited from 16 centers (n=312). Single nucleotide polymorphisms previously associated with BrS at genome-wide significance were studied in both cohorts: rs11708996, rs10428132, and rs9388451. An additive linear genetic model for the BrS-GRS was assumed (6 single nucleotide polymorphism risk alleles). RESULTS: In the total population (n=312), BrS-GRS ≥4 risk alleles yielded an odds ratio of 4.15 for BrS phenotype ([95% CI, 1.45-11.85]; P=0.0078). Among SCN5A-positive individuals (n=258), BrS-GRS ≥4 risk alleles yielded an odds ratio of 2.35 ([95% CI, 0.89-6.22]; P=0.0846). In SCN5A-negative relatives (n=54), BrS-GRS ≥4 alleles yielded an odds ratio of 22.29 ([95% CI, 1.84-269.30]; P=0.0146). Among E1784K-SCN5A positive family members (n=79), hosting ≥4 risk alleles gave an odds ratio=5.12 ([95% CI, 1.93-13.62]; P=0.0011). CONCLUSIONS: Common genetic variation is associated with variable expressivity of BrS phenotype in SCN5A families, explaining in part incomplete penetrance and genotype-negative phenotype-positive individuals. SCN5A mutation genotype and a BrS-GRS associate with BrS phenotype, but the strength of association varies according to presence of a SCN5A mutation and severity of loss of function.


Asunto(s)
Síndrome de Brugada/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Adulto , Alelos , Femenino , Estudios de Asociación Genética , Haploinsuficiencia/genética , Humanos , Funciones de Verosimilitud , Mutación con Pérdida de Función/genética , Masculino , Fenotipo , Factores de Riesgo
15.
JACC Clin Electrophysiol ; 6(12): 1561-1570, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33213816

RESUMEN

OBJECTIVES: This study sought to determine the relationship between long QT syndrome (LQTS) subtype (LTQ1, LTQ2, LTQ3) and postnatal cardiac events (CEs). BACKGROUND: LQTS presenting with 2:1 atrioventricular block or torsades de pointes in the fetus and/or neonate has been associated with risk for major CEs, but overall outcomes and predictors remain unknown. METHODS: A retrospective study involving 25 international centers evaluated the course of fetuses/newborns diagnosed with congenital LQTS and either 2:1 atrioventricular block or torsades de pointes. The primary outcomes were age at first CE after dismissal from the newborn hospitalization and death and/or cardiac transplantation during follow-up. CE was defined as aborted cardiac arrest, appropriate shock from implantable cardioverter-defibrillator, or sudden cardiac death. RESULTS: A total of 84 fetuses and/or neonates were identified with LQTS (12 as LQT1, 35 as LQT2, 37 as LQT3). Median gestational age at delivery was 37 weeks (interquartile range: 35 to 39 weeks) and age at hospital discharge was 3 weeks (interquartile range: 2 to 5 weeks). Fetal demise occurred in 2 and pre-discharge death in 1. Over a median of 5.2 years, there were 1 LQT1, 3 LQT2, and 23 LQT3 CEs (13 aborted cardiac arrests, 5 sudden cardiac deaths, and 9 appropriate shocks). One patient with LQT1 and 11 patients with LQT3 died or received cardiac transplant during follow-up. The only multivariate predictor of post-discharge CEs was LQT3 status (LQT3 vs. LQT2: hazard ratio: 8.4; 95% confidence interval: 2.6 to 38.9; p < 0.001), and LQT3, relative to LQT2, genotype predicted death and/or cardiac transplant (p < 0.001). CONCLUSIONS: In this large multicenter study, fetuses and/or neonates with LQT3 but not those with LQT1 or LQT2 presenting with severe arrhythmias were at high risk of not only frequent, but lethal CEs.


Asunto(s)
Cuidados Posteriores , Síndrome de QT Prolongado , Electrocardiografía , Feto , Genotipo , Humanos , Recién Nacido , Síndrome de QT Prolongado/complicaciones , Síndrome de QT Prolongado/genética , Alta del Paciente , Estudios Retrospectivos
16.
Circulation ; 142(25): 2405-2415, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33073610

RESUMEN

BACKGROUND: The diagnosis of long QT syndrome (LQTS) is rather straightforward. We were surprised by realizing that, despite long-standing experience, we were making occasional diagnostic errors by considering as affected subjects who, over time, resulted as not affected. These individuals were all actively practicing sports-an observation that helped in the design of our study. METHODS: We focused on subjects referred to our center by sports medicine doctors on suspicion of LQTS because of marked repolarization abnormalities on the ECG performed during the mandatory medical visit necessary in Italy to obtain the certificate of eligibility to practice sports. They all underwent our standard procedures involving both a resting and 12-lead ambulatory ECG, an exercise stress test, and genetic screening. RESULTS: There were 310 such consecutive subjects, all actively practicing sports with many hours of intensive weekly training. Of them, 111 had a normal ECG, different cardiac diseases, or were lost to follow-up and exited the study. Of the remaining 199, all with either clear QTc prolongation and/or typical repolarization abnormalities, 121 were diagnosed as affected based on combination of ECG abnormalities with positive genotyping (QTc, 482±35 ms). Genetic testing was negative in 78 subjects, but 45 were nonetheless diagnosed as affected by LQTS based on unequivocal ECG abnormalities (QTc, 472±33 ms). The remaining 33, entirely asymptomatic and with a negative family history, showed an unexpected and practically complete normalization of the ECG abnormalities (their QTc shortened from 492±37 to 423±25 ms [P<0.001]; their Schwartz score went from 3.0 to 0.06) after detraining. They were considered not affected by congenital LQTS and are henceforth referred to as "cases." Furthermore, among them, those who resumed similarly heavy physical training showed reappearance of the repolarization abnormalities. CONCLUSION: It is not uncommon to suspect LQTS among individuals actively practicing sports based on marked repolarization abnormalities. Among those who are genotype-negative, >40% normalize their ECG after detraining, but the abnormalities tend to recur with resumption of training. These individuals are not affected by congenital LQTS but could have a form of acquired LQTS. Care should be exercised to avoid diagnostic errors.


Asunto(s)
Potenciales de Acción , Atletas , Electrocardiografía Ambulatoria , Prueba de Esfuerzo , Ejercicio Físico , Pruebas Genéticas , Frecuencia Cardíaca , Síndrome de QT Prolongado/diagnóstico , Potenciales de Acción/genética , Adolescente , Adulto , Niño , Errores Diagnósticos , Femenino , Predisposición Genética a la Enfermedad , Frecuencia Cardíaca/genética , Humanos , Italia , Síndrome de QT Prolongado/congénito , Síndrome de QT Prolongado/fisiopatología , Masculino , Persona de Mediana Edad , Fenotipo , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Adulto Joven
17.
Circulation ; 142(4): 324-338, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32429735

RESUMEN

BACKGROUND: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. METHODS: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. RESULTS: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P<5×10-8) near NOS1AP, KCNQ1, and KLF12, and 1 missense variant in KCNE1(p.Asp85Asn) at the suggestive threshold (P<10-6). Heritability analyses showed that ≈15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP 0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (rg=0.40; P=3.2×10-3). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P<10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P<0.005). CONCLUSIONS: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Síndrome de QT Prolongado/genética , Adolescente , Adulto , Edad de Inicio , Alelos , Estudios de Casos y Controles , Electrocardiografía , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/mortalidad , Síndrome de QT Prolongado/terapia , Herencia Multifactorial , Fenotipo , Polimorfismo de Nucleótido Simple , Pronóstico , Índice de Severidad de la Enfermedad , Adulto Joven
18.
Am J Physiol Heart Circ Physiol ; 318(6): H1357-H1370, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32196358

RESUMEN

Synapse-associated protein 97 (SAP97) is a scaffolding protein crucial for the functional expression of several cardiac ion channels and therefore proper cardiac excitability. Alterations in the functional expression of SAP97 can modify the ionic currents underlying the cardiac action potential and consequently confer susceptibility for arrhythmogenesis. In this study, we generated a murine model for inducible, cardiac-targeted Sap97 ablation to investigate arrhythmia susceptibility and the underlying molecular mechanisms. Furthermore, we sought to identify human SAP97 (DLG1) variants that were associated with inherited arrhythmogenic disease. The murine model of cardiac-specific Sap97 ablation demonstrated several ECG abnormalities, pronounced action potential prolongation subject to high incidence of arrhythmogenic afterdepolarizations and notable alterations in the activity of the main cardiac ion channels. However, no DLG1 mutations were found in 40 unrelated cases of genetically elusive long QT syndrome (LQTS). Instead, we provide the first evidence implicating a gain of function in human DLG1 mutation resulting in an increase in Kv4.3 current (Ito) as a novel, potentially pathogenic substrate for Brugada syndrome (BrS). In conclusion, DLG1 joins a growing list of genes encoding ion channel interacting proteins (ChIPs) identified as potential channelopathy-susceptibility genes because of their ability to regulate the trafficking, targeting, and modulation of ion channels that are critical for the generation and propagation of the cardiac electrical impulse. Dysfunction in these critical components of cardiac excitability can potentially result in fatal cardiac disease.NEW & NOTEWORTHY The gene encoding SAP97 (DLG1) joins a growing list of genes encoding ion channel-interacting proteins (ChIPs) identified as potential channelopathy-susceptibility genes because of their ability to regulate the trafficking, targeting, and modulation of ion channels that are critical for the generation and propagation of the cardiac electrical impulse. In this study we provide the first data supporting DLG1-encoded SAP97's candidacy as a minor Brugada syndrome susceptibility gene.


Asunto(s)
Arritmias Cardíacas/metabolismo , Homólogo 1 de la Proteína Discs Large/metabolismo , Corazón/fisiopatología , Miocardio/metabolismo , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Homólogo 1 de la Proteína Discs Large/genética , Humanos , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo
19.
Am J Obstet Gynecol ; 222(3): 263.e1-263.e11, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31520628

RESUMEN

BACKGROUND: Most fetal deaths are unexplained. Long QT syndrome is a genetic disorder of cardiac ion channels. Affected individuals, including fetuses, are predisposed to sudden death. We sought to determine the risk of fetal death in familial long QT syndrome, in which the mother or father carries the long QT syndrome genotype. In addition, we assessed whether risk differed if the long QT syndrome genotype was inherited from the mother or father. OBJECTIVE: This was a retrospective review of pregnancies in families with the 3 most common heterozygous pathogenic long QT syndrome genotypes in KCNQ1 (LQT1), KCNH2 (LQT2), or SCN5A (LQT3), which occur in approximately 1 in 2000 individuals. The purpose of our study was to compare pregnancy and birth outcomes in familial long QT syndrome with the normal population and between maternal and paternal carriers of the long QT syndrome genotype. We hypothesized that fetal death before (miscarriage) and after (stillbirths) 20 weeks gestation would be increased in familial long QT syndrome compared with the normal population and that the parent of origin would not affect birth outcomes. STUDY DESIGN: Our study was a multicenter observational case series of 148 pregnancies from 103 families (80 mothers, 23 fathers) with familial long QT syndrome (60 with LQT1, 29 with LQT2, 14 with LQT3) who were recruited from 11 international centers with expertise in hereditary heart rhythm diseases, pediatric and/or adult electrophysiology, and high-risk pregnancies. Clinical databases from these sites were reviewed for long QT syndrome that occurred in men or women of childbearing age (18-40 years). Pregnancy outcomes (livebirth, stillbirth, and miscarriage), birthweights, and gestational age at delivery were compared among long QT syndrome genotypes and between maternal vs paternal long QT syndrome-affected status with the use of logistic regression analysis. RESULTS: Most offspring (80%; 118/148) were liveborn at term; 66% of offspring (73/110) had long QT syndrome. Newborn infants of mothers with long QT syndrome were delivered earlier and, when the data were controlled for gestational age, weighed less than newborn infants of long QT syndrome fathers. Fetal arrhythmias were observed rarely, but stillbirths (fetal death at >20 weeks gestation) were 8 times more frequent in long QT syndrome (4% vs approximately 0.5%); miscarriages (fetal death at ≤20 weeks gestation) were 2 times that of the general population (16% vs 8%). The likelihood of fetal death was significantly greater with maternal vs paternal long QT syndrome (24.4% vs 3.4%; P=.036). Only 10% of all fetal deaths underwent postmortem long QT syndrome testing; 2 of 3 cases were positive for the family long QT syndrome genotype. CONCLUSION: This is the first report to demonstrate that mothers with long QT syndrome are at increased risk of fetal death and to uncover a previously unreported cause of stillbirth. Our results suggest that maternal effects of long QT syndrome channelopathy may cause placental or myometrial dysfunction that confers increased susceptibility to fetal death and growth restriction in newborn survivors, regardless of long QT syndrome status.


Asunto(s)
Aborto Espontáneo/epidemiología , Síndrome de QT Prolongado/epidemiología , Madres , Mortinato/epidemiología , Antagonistas Adrenérgicos beta/uso terapéutico , Arritmias Cardíacas/epidemiología , Peso al Nacer , Cesárea/estadística & datos numéricos , Padre , Femenino , Enfermedades Fetales/epidemiología , Retardo del Crecimiento Fetal/epidemiología , Edad Gestacional , Heterocigoto , Humanos , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Embarazo , Nacimiento Prematuro/epidemiología , Estudios Retrospectivos , Riesgo
20.
Clin J Sport Med ; 30(5): e159-e162, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30893123

RESUMEN

Absence of the pericardium is a rare congenital disease in which the fibroserum membrane covering the heart is partially or totally absent. It is characterized by few echocardiography (ECG) and imaging features that can mislead the diagnosis to an inherited cardiac disease, such as arrhythmogenic right ventricular cardiomyopathy. Although it has often a benign course, this congenital defect should be identified as in some cases herniation and strangulation can be life-threatening and cause sudden cardiac death. Red flags on ECG (sinus bradycardia, variable T-wave inversion), chest x-ray (Snoopy sign, absence of tracheal deviation, and esophagus impression), and transthoracic echocardiogram (unusual windows, teardrop left ventricle, and elongated atria) should rise the suspicion of pericardium absence. The correct diagnosis, confirmed by cardiac magnetic resonance, is mandatory as the consequences on the sport activity certification, the management, and the treatment are extremely different.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Pericardio/anomalías , Adolescente , Diagnóstico Diferencial , Ecocardiografía , Electrocardiografía , Humanos , Hipertrofia Ventricular Derecha/diagnóstico por imagen , Masculino , Pericardio/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...