Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 516: 27-41, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805001

RESUMEN

Kainic acid (KA), an analogue of the excitatory neurotransmitter glutamate, when administered systemically can trigger seizures and neuronal loss in a manner that mirrors the neuropathology of human mesial temporal lobe epilepsy (mTLE), which affects ∼50 million people globally. Evidence suggests that changes in astrocytes which precede neuronal damage play an important role in the degeneration of neurons and/or development of seizures in TLE pathogenesis. Additionally, a role for microtubule associated tau protein, involved in various neurodegenerative diseases including Alzheimer's disease, has also been suggested in the development of seizure and/or neurodegeneration in TLE pathogenesis. At present, possible alterations of different subtypes of astrocytes and their association, if any, with tau protein in TLE remain unclear. In this study, we evaluated alterations of different subtypes of astrocytes and phospho-/cleaved-tau levels in KA-treated rat model of TLE. Our results reveal that levels/expression of various astrocyte markers such as GFAP, vimentin, S100B, Aldh1L1, but not GS, are increased in the hippocampus of KA-treated rats. The levels/expression of both A1(C3+) and A2(S100A10+)-like astrocytes are also increased in KA-treated rats. Concurrently, the total (Tau1 and Tau5) and phospho-tau (AT270 and PHF1) levels are transiently enhanced following KA administration. Furthermore, the level/expression of cleaved-tau, which is apparent in a subset of GFAP-, S100B- and A2-positive astrocytes, are increased in KA-treated rats. These results, taken together, suggest a differential role for various astrocytic subpopulations and tau protein in the development of seizure and/or loss of neurons in KA model of TLE and possibly in human mTLE pathogenesis.


Asunto(s)
Epilepsia del Lóbulo Temporal , Ácido Kaínico , Humanos , Adulto , Ratas , Animales , Astrocitos/metabolismo , Proteínas tau/metabolismo , Hipocampo/metabolismo , Convulsiones/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Modelos Animales de Enfermedad
2.
Bioact Mater ; 17: 506-525, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36330076

RESUMEN

Alzheimer's disease (AD) is believed to be triggered by increased levels/aggregation of ß-amyloid (Aß) peptides. At present, there is no effective disease-modifying treatment for AD. Here, we evaluated the therapeutic potential of FDA-approved native poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles on Aß aggregation and in cellular/animal models of AD. Our results showed that native PLGA can not only suppress the spontaneous aggregation but can also trigger disassembly of preformed Aß aggregates. Spectroscopic studies, molecular dynamics simulations and biochemical analyses revealed that PLGA, by interacting with the hydrophobic domain of Aß1-42, prevents a conformational shift towards the ß-sheet structure, thus precluding the formation and/or triggering disassembly of Aß aggregates. PLGA-treated Aß samples can enhance neuronal viability by reducing phosphorylation of tau protein and its associated signaling mechanisms. Administration of PLGA can interact with Aß aggregates and attenuate memory deficits as well as Aß levels/deposits in the 5xFAD mouse model of AD. PLGA can also protect iPSC-derived neurons from AD patients against Aß toxicity by decreasing tau phosphorylation. These findings provide unambiguous evidence that native PLGA, by targeting different facets of the Aß axis, can have beneficial effects in mouse neurons/animal models as well as on iPSC-derived AD neurons - thus signifying its unique therapeutic potential in the treatment of AD pathology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...