Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758038

RESUMEN

Molecular dynamics (MD) simulation is a popular method for elucidating the structures and functions of biomolecules. However, exploring the conformational space, especially for large systems with slow transitions, often requires enhanced sampling methods. Although conducting MD at high temperatures provides a straightforward approach, resulting conformational ensembles diverge significantly from those at low temperatures. To address this discrepancy, we propose a novel probability density-based reweighting (PDR) method. PDR exhibits robust performance across four distinct systems, including a miniprotein, a cyclic peptide, a protein loop, and a protein-peptide complex. It accurately restores the conformational distributions at high temperatures to those at low temperatures. Additionally, we apply PDR to reweight previously studied high-T MD simulations of 12 protein-peptide complexes, enabling a comprehensive investigation of the conformational space of protein-peptide complexes.

2.
Heliyon ; 9(3): e14500, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36967891

RESUMEN

During the epidemics of respiratory infectious diseases, the use of public transportation increases the risk of disease transmission. Therefore, we established a dynamic model to provide an in-depth understanding of the mechanism of epidemic spread via this route. We designed a computer program to model a rail transit system including four transit lines in a small town in which assumed 70% of the residents commute via these trams in weekdays and the remaining residents take the tram at random. The model could identify the best travel route for each passenger and the specific passengers onboard when the tram passed through each station, and simulate the dynamic spread of a respiratory pathogen as the passengers used the rail transit system. Based on the program operating, we estimated that all residents in the town were ultimately infected, including 86.6% who were infected due to the public transportation system. The remaining individuals were infected at home. As the infection rate increased, the number of infected individuals increased more rapidly. Reducing the frequency of trams, driving private cars or riding bicycles, showing nucleic acid certificates and wearing masks for passengers, etc., are effective measures for the prevention of the spread of epidemic diseases.

3.
Eur J Med Chem ; 244: 114731, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242991

RESUMEN

Cephalotaxine-type alkaloids (CTAs), represented by homoharringtonine (HHT, 1), display potent efficacy against different types of leukemia cells. In this study, a method for hydrogenation of ß-substituted itaconic acid monoesters with chiral Ru[DTBM-SegPhos](OAc)2 was developed. This metal-catalyzed asymmetric hydrogenation enabled the convenient semisynthesis of novel cephalotaxine derivatives with chiral 2'-substituted-succinic acid 4-mono-methyl esters as side chains. The preliminary structure-activity relationship (SAR) of the compounds' antineoplastic activities was studied. Eventually, we discovered compound 10b with potent antineoplastic activities against leukemia and broadly anticancer activities against a panel of cancer cells. Our study provided a highly enantioselective process enabling the semisynthesis of cephalotaxine derivatives, which are interesting for further study on a scientific basis.


Asunto(s)
Antineoplásicos , Harringtoninas , Leucemia , Humanos , Homoharringtonina/farmacología , Ésteres/farmacología , Ésteres/química , Estereoisomerismo , Harringtoninas/farmacología , Harringtoninas/química , Antineoplásicos/farmacología
4.
Front Chem ; 10: 910353, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936102

RESUMEN

The combination of histone deacetylase inhibitor and BRAF inhibitor (BRAFi) has been shown to enhance the antineoplastic effect and reduce the progress of BRAFi resistance. In this study, a series of (thiazol-5-yl)pyrimidin-2-yl)amino)-N-hydroxyalkanamide derivatives were designed and synthesized as novel dual inhibitors of BRAF and HDACs using a pharmacophore hybrid strategy. In particular, compound 14b possessed potent activities against BRAF, HDAC1, and HDAC6 enzymes. It potently suppressed the proliferation of HT-29 cells harboring BRAFV600E mutation as well as HCT116 cells with wild-type BRAF. The dual inhibition against BRAF and HDAC downstream proteins was validated in both cells. Collectively, the results support 14b as a promising lead molecule for further development and a useful tool for studying the effects of BRAF/HDAC dual inhibitors.

5.
Org Lett ; 23(15): 5761-5765, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34292755

RESUMEN

A novel formal cross-coupling of aryl methyl sulfones and alcohols affording alkyl aryl ethers via an SRN1 pathway is developed. Two marketed antitubercular drugs were efficiently prepared employing this approach as the key step. A dimsyl-anion initiated radical chain process was revealed as the major pathway. DFT calculations indicate that the formation of a radical anion via nucleophilic addition of alkoxide to the aryl radical is the key step in determining the observed chemoselectivity.

6.
BMC Public Health ; 20(1): 135, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32000737

RESUMEN

BACKGROUND: Outbreaks of respiratory infectious diseases often occur in crowded places. To understand the pattern of spread of an outbreak of a respiratory infectious disease and provide a theoretical basis for targeted implementation of scientific prevention and control, we attempted to establish a stochastic model to simulate an outbreak of a respiratory infectious disease at a military camp. This model fits the general pattern of disease transmission and further enriches theories on the transmission dynamics of infectious diseases. METHODS: We established an enclosed system of 500 people exposed to adenovirus type 7 (ADV 7) in a military camp. During the infection period, the patients transmitted the virus randomly to susceptible people. The spread of the epidemic under militarized management mode was simulated using a computer model named "the random collision model", and the effects of factors such as the basic reproductive number (R0), time of isolation of the patients (TOI), interval between onset and isolation (IOI), and immunization rates (IR) on the developmental trend of the epidemic were quantitatively analysed. RESULTS: Once the R0 exceeded 1.5, the median attack rate increased sharply; when R0 = 3, with a delay in the TOI, the attack rate increased gradually and eventually remained stable. When the IOI exceeded 2.3 days, the median attack rate also increased dramatically. When the IR exceeded 0.5, the median attack rate approached zero. The median generation time was 8.26 days, (95% confidence interval [CI]: 7.84-8.69 days). The partial rank correlation coefficients between the attack rate of the epidemic and R0, TOI, IOI, and IR were 0.61, 0.17, 0.45, and - 0.27, respectively. CONCLUSIONS: The random collision model not only simulates how an epidemic spreads with superior precision but also allows greater flexibility in setting the activities of the exposure population and different types of infectious diseases, which is conducive to furthering exploration of the epidemiological characteristics of epidemic outbreaks.


Asunto(s)
Simulación por Computador , Brotes de Enfermedades , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/transmisión , Infecciones por Adenovirus Humanos/epidemiología , Infecciones por Adenovirus Humanos/transmisión , Humanos , Instalaciones Militares
7.
Sci Rep ; 8(1): 4051, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511257

RESUMEN

In this study, estimates of the growth rate of new infections, based on the growth rate of new laboratory-confirmed cases, were used to provide a statistical basis for in-depth research into the epidemiological patterns of H7N9 epidemics. The incubation period, interval from onset to laboratory confirmation, and confirmation time for all laboratory-confirmed cases of H7N9 avian influenza in Mainland China, occurring between January 2013 and June 2017, were used as the statistical data. Stochastic processes theory and maximum likelihood were used to calculate the growth rate of new infections. Time-series analysis was then performed to assess correlations between the time series of new infections and new laboratory-confirmed cases. The rate of new infections showed significant seasonal fluctuation. Laboratory confirmation was delayed by a period of time longer than that of the infection (average delay, 13 days; standard deviation, 6.8 days). At the lags of -7.5 and -15 days, respectively, the time-series of new infections and new confirmed cases were significantly correlated; the cross correlation coefficients (CCFs) were 0.61 and 0.16, respectively. The temporal distribution characteristics of new infections and new laboratory-confirmed cases were similar and strongly correlated.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/epidemiología , Topografía Médica , Zoonosis/epidemiología , Animales , China/epidemiología , Humanos , Estaciones del Año , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...