Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 511, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39187876

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is a chronic intestinal inflammation, resulting in a global healthcare challenge with no real specific medicine. Natural medicines are recognized as a potential clinical alternative therapy, but their applications are limited by poor solubility and low bioavailability. RESULTS: In this work, inspired by the natural medicines of ancient China, novel functional carbon dots derived from Magnetite and Medicated Leaven (MML-CDs) were synthesized by hydrothermal method, and confirmed their ultrasmall nano-size (3.2 ± 0.6 nm) and Fe doped surface structure, thereby with excellent gastrointestinal stability, remarkable capabilities in eliminating ROS, and highly biocompatibility. With no external stimuli, the oral administration of MML-CDs demonstrated obvious alleviation to UC. Further experiments pointed that MML-CDs could improve hemostasis capability, suppress inflammation reactions and oxidative stress, and up-regulate the expression of tight junction proteins. Furthermore, MML-CDs also showed well regulation in the dysbiosis of intestinal flora. CONCLUSION: Overall, above evidence reveals that green-synthesized MML-CDs can significantly alleviate intestinal bleeding, inhibit colon inflammation, and repair colonic barrier damage, further regulating intestinal flora and intestinal inflammation microenvironment. Our findings provide an efficient oral administration of MML-CDs as a novel therapy strategy for ulcerative colitis.


Asunto(s)
Antioxidantes , Carbono , Colitis Ulcerosa , Colitis Ulcerosa/tratamiento farmacológico , Animales , Carbono/química , Administración Oral , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/uso terapéutico , Ratones , Masculino , Estrés Oxidativo/efectos de los fármacos , Humanos , Puntos Cuánticos/química , Productos Biológicos/química , Productos Biológicos/farmacología , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
2.
Front Mol Biosci ; 10: 1282929, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116381

RESUMEN

Background: Liver fibrosis represents an intermediate stage in the progression of liver disease, and as of now, there exists no established clinical therapy for effective antifibrotic treatment. Purpose: Our aim is to explore the impact of Carbon dots derived from Vaccaria Semen Carbonisata (VSC-CDs) on carbon tetrachloride-induced liver fibrosis in mice. Methods: VSC-CDs were synthesized employing a modified pyrolysis process. Comprehensive characterization was performed utilizing various techniques, including transmission electron microscopy (TEM), multiple spectroscopies, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography (HPLC). A hepatic fibrosis model induced by carbon tetrachloride was utilized to evaluate the anti-hepatic fibrosis effects of VSC-CDs. Results: VSC-CDs, exhibiting a quantum yield (QY) of approximately 2.08%, were nearly spherical with diameters ranging from 1.0 to 5.5 nm. The VSC-CDs prepared in this study featured a negative charge and abundant chemical functional groups. Furthermore, these particles demonstrated outstanding dispersibility in the aqueous phase and high biocompatibility. Moreover, VSC-CDs not only enhanced liver function and alleviated liver damage in pathomorphology but also mitigated the extent of liver fibrosis. Additionally, this study marks the inaugural demonstration of the pronounced activity of VSC-CDs in inhibiting inflammatory reactions, reducing oxidative damage, and modulating the TGF-ß/Smad signaling pathway. Conclusion: VSC-CDs exerted significant potential for application in nanodrugs aimed at treating liver fibrosis.

3.
Front Mol Biosci ; 10: 1334083, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259687

RESUMEN

Introduction: Depression is a common illness worldwide. However, the current treatments available for depression only achieve relative success, often come with several side effects, and are associated with high costs. Aurantii Fructus Immaturus (AFI) has a rich historical legacy in Traditional Chinese Medicine (TCM) for its traditional use as a treatment for depression. In this research, our primary objective is to examine the potential antidepressant properties and the mechanisms at play behind a particular bioactive compound found in AFI, which is referred to as carbon dots derived from AFI Carbonisata (AFIC-CDs). Methods: Extracted and isolated the AFIC-CDs from the decoction of AFIC, then characterized the morphological structure and functional groups comprehensively. We then utilized two distinct models to investigate the anti-depressive properties of AFIC-CDs: the chronic unpredictable mild stress (CUMS) model and the reserpine-induced pain-depression dyad model. In the CUMS model, we assessed immobile time and measured neurotransmitter levels in the mouse brain cortex. In the pain-depression dyad model, we evaluated immobile time, neurotransmitter levels, interleukin-1 (IL-1ß) and tumor necrosis factor-α (TNF-α) levels, and the expression of mRNA of brain-derived neurotrophic factor (BDNF) and tryptophan hydroxylase 2 (Tph2). Results: AFIC-CDs were found to have abundant chemical groups, and their diameter ranged from 2 to 10 nm. In the CUMS model, AFIC-CDs demonstrated significant effects. They reduced the immobile time of the mice and increased the levels of serotonin (5-HT), dopamine (DA), and norepinephrine (NE) in the mouse brain cortex. In the pain-depression dyad model, the AFIC-CDs groups decreased the immobile time, showed effect in increasing both the neurotransmitters' levels and the expression of mRNA of BDNF and Tph2, and decreased the IL-1ß and TNF-α levels in mouse brain cortex. Taken together, these results strongly indicate that AFIC-CDs possess significant antidepressant activity. Conclusion: AFIC-CDs demonstrate promising therapeutic potential in the treatment of depression, suggesting that they may become a valuable candidate for depression management. This not only extends the understanding of the biological activity of carbon dots (CDs) but also opens up new possibilities for the development of effective depression treatment strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA