Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
NPJ Digit Med ; 7(1): 3, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182737

RESUMEN

Parkinson's disease (PD) exhibits significant clinical heterogeneity, presenting challenges in the identification of reliable electroencephalogram (EEG) biomarkers. Machine learning techniques have been integrated with resting-state EEG for PD diagnosis, but their practicality is constrained by the interpretable features and the stochastic nature of resting-state EEG. The present study proposes a novel and interpretable deep learning model, graph signal processing-graph convolutional networks (GSP-GCNs), using event-related EEG data obtained from a specific task involving vocal pitch regulation for PD diagnosis. By incorporating both local and global information from single-hop and multi-hop networks, our proposed GSP-GCNs models achieved an averaged classification accuracy of 90.2%, exhibiting a significant improvement of 9.5% over other deep learning models. Moreover, the interpretability analysis revealed discriminative distributions of large-scale EEG networks and topographic map of microstate MS5 learned by our models, primarily located in the left ventral premotor cortex, superior temporal gyrus, and Broca's area that are implicated in PD-related speech disorders, reflecting our GSP-GCN models' ability to provide interpretable insights identifying distinctive EEG biomarkers from large-scale networks. These findings demonstrate the potential of interpretable deep learning models coupled with voice-related EEG signals for distinguishing PD patients from healthy controls with accuracy and elucidating the underlying neurobiological mechanisms.

2.
Front Aging Neurosci ; 15: 1215330, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37655339

RESUMEN

Background: Speech impairment is a common symptom of Parkinson's disease (PD) that worsens with disease progression and affects communication and quality of life. Current pharmacological and surgical treatments for PD have inconsistent effects on speech impairment. The cerebellum is an essential part of sensorimotor network that regulates speech production and becomes dysfunctional in PD. Continuous theta-burst stimulation (cTBS) is a non-invasive brain stimulation technique that can modulate the cerebellum and its connections with other brain regions. Objective: To investigate whether cTBS over the right cerebellum coupled with speech-language therapy (SLT) can improve speech impairment in PD. Methods: In this randomized controlled trial (RCT), 40 patients with PD will be recruited and assigned to either an experimental group (EG) or a control group (CG). Both groups will receive 10 sessions of standard SLT. The EG will receive real cTBS over the right cerebellum, while the CG will receive sham stimulation. Blinded assessors will evaluate the treatment outcome at three time points: pre-intervention, post-intervention, and at a 12-week follow-up. The primary outcome measures are voice/speech quality and neurobehavioral parameters of auditory-vocal integration. The secondary outcome measures are cognitive function, quality of life, and functional connectivity determined by resting-state functional magnetic resonance imaging (fMRI). Significance: This trial will provide evidence for the efficacy and safety of cerebellar cTBS for the treatment of speech impairment in PD and shed light on the neural mechanism of this intervention. It will also have implications for other speech impairment attributed to cerebellar dysfunctions. Clinical trial registration: www.chictr.org.cn, identifier ChiCTR2100050543.

3.
Neuroimage ; 278: 120282, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37468021

RESUMEN

The posterior superior temporal gyrus (pSTG) has been implicated in the integration of auditory feedback and motor system for controlling vocal production. However, the question as to whether and how the pSTG is causally involved in vocal feedback control is currently unclear. To this end, the present study selectively stimulated the left or right pSTG with continuous theta burst stimulation (c-TBS) in healthy participants, then used event-related potentials to investigate neurobehavioral changes in response to altered auditory feedback during vocal pitch regulation. The results showed that, compared to control (vertex) stimulation, c-TBS over the right pSTG led to smaller vocal compensations for pitch perturbations accompanied by smaller cortical N1 and larger P2 responses. Enhanced P2 responses received contributions from the right-lateralized temporal and parietal regions as well as the insula, and were significantly correlated with suppressed vocal compensations. Surprisingly, these effects were not found when comparing c-TBS over the left pSTG with control stimulation. Our findings provide evidence, for the first time, that supports a causal relationship between right, but not left, pSTG and auditory-motor integration for vocal pitch regulation. This lends support to a right-lateralized contribution of the pSTG in not only the bottom-up detection of vocal feedback errors but also the involvement of driving motor commands for error correction in a top-down manner.


Asunto(s)
Habla , Voz , Humanos , Habla/fisiología , Área de Wernicke , Retroalimentación , Percepción de la Altura Tonal/fisiología , Voz/fisiología , Retroalimentación Sensorial/fisiología , Estimulación Acústica/métodos
4.
Cereb Cortex ; 33(9): 5625-5635, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36376991

RESUMEN

Current models of speech motor control propose a role for the left inferior frontal gyrus (IFG) in feedforward control of speech production. There is evidence, however, that has implicated the functional relevance of the left IFG for the neuromotor processing of vocal feedback errors. The present event-related potential (ERP) study examined whether the left IFG is causally linked to auditory feedback control of vocal production with high-definition transcranial alternating current stimulation (HD-tACS). After receiving active or sham HD-tACS over the left IFG at 6 or 70 Hz, 20 healthy adults vocalized the vowel sounds while hearing their voice unexpectedly pitch-shifted by ±200 cents. The results showed that 6 or 70 Hz HD-tACS over the left IFG led to larger magnitudes and longer latencies of vocal compensations for pitch perturbations paralleled by larger ERP P2 responses than sham HD-tACS. Moreover, there was a lack of frequency specificity that showed no significant differences between 6 and 70 Hz HD-tACS. These findings provide first causal evidence linking the left IFG to vocal pitch regulation, suggesting that the left IFG is an important part of the feedback control network that mediates vocal compensations for auditory feedback errors.


Asunto(s)
Electroencefalografía , Estimulación Transcraneal de Corriente Directa , Adulto , Humanos , Retroalimentación , Percepción de la Altura Tonal/fisiología , Estimulación Acústica , Corteza Prefrontal , Retroalimentación Sensorial/fisiología
5.
Neuroimage ; 264: 119767, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36435342

RESUMEN

The supplementary motor area (SMA) has been implicated in the feedforward control of speech production. Whether this region is involved in speech motor control through auditory feedback, however, remains uncertain. The present event-related potential (ERP) study examined the role of the left SMA in vocal pitch regulation in a causal manner by combining auditory feedback manipulations and neuronavigated continuous theta bust stimulation (c-TBS). After receiving c-TBS over the left SMA or the control site (vertex), twenty young adults vocalized the vowel sound /u/ while hearing their voice unexpectedly pitch-shifted -50 or -200 cents. Compared to the control stimulation, c-TBS over the left SMA led to decreased vocal compensations for pitch perturbations of -50 and -200 cents. A significant decrease of N1 and P2 responses to -200 cents perturbations was also found when comparing active and control stimulation. Major neural generators of decreased P2 responses included the right-lateralized superior and middle temporal gyrus and angular gyrus. Notably, a significant correlation was found between active-control differences in the vocal compensation and P2 responses for the -200 cents perturbations. These findings provide neurobehavioral evidence for a causal link between the left SMA and auditory-motor integration for vocal pitch regulation, suggesting that the left SMA receives auditory feedback information and mediates vocal compensations for feedback errors in a bottom-up manner.


Asunto(s)
Corteza Motora , Voz , Adulto Joven , Humanos , Percepción de la Altura Tonal/fisiología , Estimulación Acústica , Estimulación Magnética Transcraneal , Voz/fisiología , Habla/fisiología , Retroalimentación Sensorial/fisiología
6.
Front Aging Neurosci ; 14: 948696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051304

RESUMEN

Accumulating evidence suggests that impairment in auditory-vocal integration characterized by abnormally enhanced vocal compensations for auditory feedback perturbations contributes to hypokinetic dysarthria in Parkinson's disease (PD). However, treatment of this abnormality remains a challenge. The present study examined whether abnormalities in auditory-motor integration for vocal pitch regulation in PD can be modulated by neuronavigated continuous theta burst stimulation (c-TBS) over the left supplementary motor area (SMA). After receiving active or sham c-TBS over left SMA, 16 individuals with PD vocalized vowel sounds while hearing their own voice unexpectedly pitch-shifted two semitones upward or downward. A group of pairwise-matched healthy participants was recruited as controls. Their vocal responses and event-related potentials (ERPs) were measured and compared across the conditions. The results showed that applying c-TBS over left SMA led to smaller vocal responses paralleled by smaller P1 and P2 responses and larger N1 responses in individuals with PD. Major neural generators of reduced P2 responses were located in the right inferior and medial frontal gyrus, pre- and post-central gyrus, and insula. Moreover, suppressed vocal compensations were predicted by reduced P2 amplitudes and enhanced N1 amplitudes. Notably, abnormally enhanced vocal and P2 responses in individuals with PD were normalized by c-TBS over left SMA when compared to healthy controls. Our results provide the first causal evidence that abnormalities in auditory-motor control of vocal pitch production in PD can be modulated by c-TBS over left SMA, suggesting that it may be a promising non-invasive treatment for speech motor disorders in PD.

7.
Front Neurosci ; 16: 1051629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620446

RESUMEN

Background: Accumulating evidence has shown significant contributions of the right cerebellum to auditory-motor integration for vocal production. Whether the left cerebellum is likewise involved in vocal motor control, however, remains unclear. Methods: By applying neuronavigated continuous and intermittent theta burst stimulation (cTBS/iTBS) over the left cerebellar lobule VII (Crus I), the present event-related potential (ERP) study investigated whether the left cerebellum exerts causal effects in modulating auditory feedback control of vocal pitch production. After receiving cTBS, iTBS, or sham stimulation over the left cerebellum, a group of fifteen young adults produced sustained vowels while hearing their voice unexpectedly shifted in pitch upwards or downwards by 200 cents. The effects of cerebellar stimulation were assessed by measuring the vocal and ERP (N1/P2) responses to pitch perturbations across the conditions. Results: When compared to sham stimulation, cTBS or iTBS over the left cerebellar lobule VII (Crus I) led to no systematic changes in vocal compensations for pitch perturbations in auditory feedback. Also, the cortical N1/P2 responses did not vary significantly across the three stimulation sessions. Conclusion: These findings present the first neurobehavioral evidence suggesting that the left cerebellum is not causally associated with auditory feedback control of vocal production. Together with previously reported causal effects of the right cerebellum in modulating vocal pitch regulation, the present study lends support to the hypothesis that there is a functional lateralization of the cerebellum in vocal motor control though auditory feedback.

8.
Front Neurosci ; 14: 106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174808

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) technology, which is amongst the most used non-invasive brain stimulation techniques currently available, has developed rapidly from 2009 to 2018. However, reports on the trends of rTMS using bibliometric analysis are rare. The goal of the present bibliometric analysis is to analyze and visualize the trends of rTMS, including general (publication patterns) and emerging trends (research frontiers), over the last 10 years by using the visual analytic tool CiteSpace V. Publications related to rTMS from 2009 to 2018 were retrieved from the Web of Science (WoS) database, including 2,986 peer-reviewed articles/reviews. Active authors, journals, institutions, and countries were identified by WoS and visualized by CiteSpace V, which could also detect burst changes to identify emerging trends. GraphPad Prism 8 was used to analyze the time trend of annual publication outputs. The USA ranked first in this field. Pascual-Leone A (author A), Fitzgerald PB (author B), George MS (author C), Lefaucheur JP (author D), and Fregni F (author E) made great contributions to this field of study. The most prolific institution to publish rTMS-related publications in the last decade was the University of Toronto. The journal Brain Stimulation published most papers. Lefaucheur et al.'s paper in 2014, and the keyword "sham controlled trial" showed the strongest citation bursts by the end of 2018, which indicates increased attention to the underlying work, thereby indicating the research frontiers. This study reveals the publication patterns and emerging trends of rTMS based on the records published from 2009 to 2018. The insights obtained have reference values for the future research and application of rTMS.

9.
Cereb Cortex ; 30(8): 4515-4527, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32147719

RESUMEN

The dorsolateral prefrontal cortex (DLPFC) has been implicated in auditory-motor integration for accurate control of vocal production, but its precise role in this feedback-based process remains largely unknown. To this end, the present event-related potential study applied a transcranial magnetic stimulation (TMS) protocol, continuous theta-burst stimulation (c-TBS), to disrupt cortical activity in the left DLPFC as young adults vocalized vowel sounds while hearing their voice unexpectedly shifted upwards in pitch. The results showed that, as compared to the sham condition, c-TBS over left DLPFC led to significantly larger vocal compensations for pitch perturbations that were accompanied by significantly smaller cortical P2 responses. Source localization analyses revealed that this brain activity pattern was the result of reduced activation in the left superior frontal gyrus and right inferior parietal lobule (supramarginal gyrus). These findings demonstrate c-TBS-induced modulatory effects of DLPFC on the neurobehavioral processing of vocal pitch regulation, suggesting that disrupting prefrontal function may impair top-down inhibitory control mechanisms that prevent speech production from being excessively influenced by auditory feedback, resulting in enhanced vocal compensations for feedback perturbations. This is the first study that provides direct evidence for a causal role of the left DLPFC in auditory feedback control of vocal production.


Asunto(s)
Atención/fisiología , Retroalimentación Sensorial/fisiología , Corteza Prefrontal/fisiología , Habla/fisiología , Femenino , Humanos , Masculino , Percepción de la Altura Tonal/fisiología , Estimulación Magnética Transcraneal , Adulto Joven
10.
Front Cell Neurosci ; 12: 177, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29997480

RESUMEN

While increasing evidence demonstrated that voluntary wheel running promotes cognitive function, little is known on how different types of voluntary wheel running affect cognitive function in elderly populations. We investigated the effects of various voluntary wheel-running types on adult hippocampal neurogenesis and spatial cognition in middle-aged mice. Male C57BL6 and Thy1-green fluorescent protein (GFP) transgenic mice (13 months) were equally assigned to one of the following groups: (1) T1: no voluntary wheel running; (2) T2: intermittent voluntary wheel running; and (3) T3: continuous voluntary wheel running. The Thy1-GFP transgenic mice were used to specifically label granule cells, since Thy-1 is a promoter for neuronal expression. Behavioral evaluations suggested that intermittent voluntary wheel running improved Morris water maze performance in middle-aged mice. The number of BrdU-positive cells was significantly higher in both intermittent and continuous voluntary wheel running compared with no voluntary wheel running. However, only intermittent voluntary wheel running facilitated the newborn cells to differentiate into granule cells, while newborn cells tended to differentiate into astrocytes and repopulation of microglia was also enhanced in the continuous voluntary wheel-running group. These results indicated that intermittent voluntary exercise may be more beneficial for enhancing spatial memory. Effective improvement of hippocampal neurogenesis was also caused by intermittent voluntary wheel running in middle-aged mice.

11.
Front Mol Neurosci ; 10: 144, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28579942

RESUMEN

Age is characterized by chronic inflammation, leading to synaptic dysfunction and dementia because the clearance of protein waste is reduced. The clearance of proteins depends partly on the permeation of the blood-brain barrier (BBB) or on the exchange of water and soluble contents between the cerebrospinal fluid (CSF) and the interstitial fluid (ISF). A wealth of evidence indicates that physical exercise improves memory and cognition in neurodegenerative diseases during aging, such as Alzheimer's disease (AD), but the influence of physical training on glymphatic clearance, BBB permeability and neuroinflammation remains unclear. In this study, glymphatic clearance and BBB permeability were evaluated in aged mice using in vivo two-photon imaging. The mice performed voluntary wheel running exercise and their water-maze cognition was assessed; the expression of the astrocytic water channel aquaporin 4 (AQP4), astrocyte and microglial activation, and the accumulation of amyloid beta (Aß) were evaluated with immunofluorescence or an enzyme-linked immunosorbent assay (ELISA); synaptic function was investigated with Thy1-green fluorescent protein (GFP) transgenic mice and immunofluorescent staining. Voluntary wheel running significantly improved water-maze cognition in the aged mice, accelerated the efficiency of glymphatic clearance, but which did not affect BBB permeability. The numbers of activated astrocytes and microglia decreased, AQP4 expression increased, and the distribution of astrocytic AQP4 was rearranged. Aß accumulation decreased, whereas dendrites, dendritic spines and postsynaptic density protein (PSD95) increased. Our study suggests that voluntary wheel running accelerated glymphatic clearance but not BBB permeation, improved astrocytic AQP4 expression and polarization, attenuated the accumulation of amyloid plaques and neuroinflammation, and ultimately protected mice against synaptic dysfunction and a decline in spatial cognition. These data suggest possible mechanisms for exercise-induced neuroprotection in the aging brain.

12.
Neurosci Lett ; 653: 189-194, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28576566

RESUMEN

Sleep deprivation (SD) is a common condition associated with a variety of nervous system diseases, and has a negative impact on emotional and cognitive function. Continuous theta burst stimulation (cTBS) is known to improve cognition and emotion function in normal situations as well as in various types of dysfunction, but the mechanism remains unknown. We used two-photon in vivo imaging to explore the effect of cTBS on glymphatic pathway clearance in normal and SD C57BL/6J mice. Aquaporin-4 (AQP4) polarization was detected by immunofluorescence. Anxiety-like behaviors was measured using open field tests. We found that SD reduced influx efficiency along the peri-vascular space (PVS), disturbed AQP4 polarization and induced anxiety-like behaviors. CTBS significantly attenuated the decrease in efficiency of solute clearance usually incurred with SD, restored the loss of AQP4 polarization and improved anxiety-like behavior in SD animals. Our results implied that cTBS had the potential to protect against neuronal dysfunction induced by sleep disorders.


Asunto(s)
Encéfalo/metabolismo , Tasa de Depuración Metabólica , Privación de Sueño/metabolismo , Animales , Ansiedad , Acuaporina 4/metabolismo , Encéfalo/fisiopatología , Estimulación Eléctrica , Masculino , Ratones Endogámicos C57BL , Privación de Sueño/líquido cefalorraquídeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA