Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Cell Res ; 439(1): 114071, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729336

RESUMEN

Atherosclerosis preferentially occurs in areas with low shear stress (LSS) and oscillatory flow. LSS has been demonstrated to correlate with the development of atherosclerosis. The sphingosine 1-phosphate receptor 1 (S1PR1), involving intravascular blood flow sensing, regulates vascular development and vascular barrier function. However, whether LSS affects atherosclerosis via regulating S1PR1 remains incompletely clear. In this study, immunostaining results of F-actin, ß-catenin, and VE-cadherin indicated that LSS impaired endothelial barrier function in human umbilical vein endothelial cells (HUVECs). Western blot analysis showed that LSS resulted in blockage of autophagic flux in HUVECs. In addition, autophagy agonist Rapamycin (Rapa) antagonized LSS-induced endothelial barrier dysfunction, whereas autophagic flux inhibitor Bafilomycin A1 (BafA1) exacerbated it, indicating that LSS promoted endothelial barrier dysfunction by triggering autophagic flux blockage. Notably, gene expression analysis revealed that LSS downregulated S1PR1 expression, which was antagonized by Rapa. Selective S1PR1 antagonist W146 impaired endothelial barrier function of HUVECs under high shear stress (HSS) conditions. Moreover, our data showed that expression of GAPARAPL2, a member of autophagy-related gene 8 (Atg8) proteins, was decreased in HUVECs under LSS conditions. Autophagic flux blockage induced by GAPARAPL2 knockdown inhibited S1PR1, aggravated endothelial barrier dysfunction of HUVECs in vitro, and promoted aortic atherosclerosis in ApoE-/- mice in vivo. Our study demonstrates that autophagic flux blockage induced by LSS downregulates S1PR1 expression and impairs endothelial barrier function. GABARAPL2 inhibition is involved in LSS-induced autophagic flux blockage, which impairs endothelial barrier function via downregulation of S1PR1.

3.
Front Cell Dev Biol ; 11: 1276098, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38161331

RESUMEN

Background: Single-cell RNA sequencing (scRNA-seq) enables specific analysis of cell populations at single-cell resolution; however, there is still a lack of single-cell-level studies to characterize the dynamic and complex interactions between osteoporotic vertebral compression fractures (OVCFs) and Kümmell's disease (KD) in the osteoimmune microenvironment. In this study, we used scRNA-seq analysis to investigate the osteoimmune microenvironment and cellular composition in OVCFs and KD. Methods: ScRNA-seq was used to perform analysis of fractured vertebral bone tissues from one OVCF and one KD patients, and a total of 8,741 single cells were captured for single-cell transcriptomic analysis. The cellularity of human vertebral bone tissue was further analyzed using uniform manifold approximation and projection. Pseudo-time analysis and gene enrichment analysis revealed the biological function of cell fate and its counterparts. CellphoneDB was used to identify the interactions between bone cells and immune cells in the osteoimmune microenvironment of human vertebral bone tissue and their potential functions. Results: A cellular profile of the osteoimmune microenvironment of human vertebral bone tissue was established, including mesenchymal stem cells (MSCs), pericytes, myofibroblasts, fibroblasts, chondrocytes, endothelial cells (ECs), granulocytes, monocytes, T cells, B cells, plasma cells, mast cells, and early erythrocytes. MSCs play an immunoregulatory function and mediate osteogenic differentiation and cell proliferation. The differentiation trajectory of osteoclasts in human vertebral bone tissue was also revealed. In addition, ECs actively participate in inflammatory infiltration and coupling with bone cells. T and B cells actively participate in regulating bone homeostasis. Finally, by identifying the interaction of ligand-receptor pairs, we found that immune cells and osteoclasts have bidirectional regulatory characteristics, have the effects of regulating bone resorption by osteoclasts and promoting bone formation, and are essential for bone homeostasis. It is also highlighted that CD8-TEM cells and osteoclasts might crosstalk via CD160-TNFRSF14 ligand-receptor interaction. Conclusion: Our analysis reveals a differential landscape of molecular pathways, population composition, and cell-cell interactions during OVCF development into KD. OVCFs exhibit a higher osteogenic differentiation capacity, owing to abundant immune cells. Conversely, KD results in greater bone resorption than bone formation due to depletion of MSCs and a relatively suppressed immune system, and this immune imbalance eventually leads to vertebral avascular necrosis. The site of action between immune cells and osteoclasts is expected to be a new therapeutic target, and these results may accelerate mechanistic and functional studies of osteoimmune cell types and specific gene action in vertebral avascular necrosis and pathological bone loss diseases, paving the way for drug discovery.

4.
Acta Biochim Pol ; 69(4): 703-710, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36272150

RESUMEN

OBJECTIVE: To explore the effect and mechanism of long noncoding RNA ERVK13-1 on osteosarcoma (OS) cell development by regulation of miR-873-5p/KLF5 axis. METHODS: The expression of ERVK13-1 in the collected tissue was detected by RT-qPCR, and then the relationship between ERVK13-1 expression and clinical characteristics of OS patients was analyzed. After OS cell lines were transfected with miR-873-5p inhibitor, si-ERVK13-1, si-KLF5 or their negative controls, the expression of ERVK13-1, miR-873-5p, and KLF5 in OS cell lines were measured, followed by determination of their effects on cell proliferation, migration, and invasion abilities. Moreover, the binding relationships of ERVK13-1 and miR-873-5p, as well as miR-873-5p and KLF5, were verified by the dual-luciferase reporter gene assay. RESULTS: Highly expressed ERVK13-1 was found in OS tissues, which was closely related to tumor size, tumor node metastasis, and distant metastasis. The overall survival of OS patients with high expression of ERVK13-1 was poorer than those with low expression of ERVK13-1. Elevated ERVK13-1 and KLF5 but suppressed miR-873-5p was observed in the OS cell lines U2OS and MG63. Transfection with miR-873-5p inhibitor enhanced the malignant potentials of OS cells, and transfection with si-ERVK13-1 or si-KLF5 reduced these abilities of OS cells. ERVK13-1 bound to miR-873-5p and KLF5 was a target gene of miR-873-5p. CONCLUSION: The ERVK13-1/miR-873-5p/KLF5 axis confers vital effect on the occurrence and progression of OS, thus providing possible guidance for the clinical treatment of OS.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Osteosarcoma/genética , Osteosarcoma/patología , Proliferación Celular/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Línea Celular Tumoral , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
6.
Front Cell Dev Biol ; 10: 910626, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874809

RESUMEN

Background: The nucleus pulposus is a constituent structure of the human intervertebral disc, and its degeneration can cause intervertebral disc degeneration (IDD). However, the cellular and molecular mechanisms involved remain elusive. Methods: Through bioinformatics analysis, the single-cell transcriptome sequencing expression profiles of human normal nucleus pulposus (NNP) cells and human degenerative nucleus pulposus (DNP) cells were compared to clarify the transcriptome differential expression profiles of human NNP and DNP. The single-cell sequencing results of the two samples were analyzed using bioinformatics methods to compare the differences in histiocytosis between human NNP and DNP, map the histiocytes of NNP and DNP, perform cell differentiation trajectories for the cell populations of interest and predict cell function, and explore their heterogeneity by pathway analysis and Gene Ontology analysis. Results: Nine cell types were identified, which were chondrocyte 1, chondrocyte 2, chondrocyte 3, chondrocyte 4, chondrocyte 5, endothelial, macrophage, neutrophil, and T cells. Analysis of the proportion of chondrocytes in different tissues revealed that chondrocyte 1 accounted for a higher proportion of NNP cells and highly expressed COL2A1 compared with DNP cells; chondrocyte 2, chondrocyte 3, chondrocyte 4, and chondrocyte 5 accounted for a higher proportion of DNP cells compared with NNP cells. Among them, chondrocyte 2 was an inhibitory calcified chondrocyte with high expression of MGP, chondrocytes 3 were fibrochondrocytes with high expression of COL1A1, chondrocytes 4 were chondrocytes that highly express pain inflammatory genes such as PTGES, and chondrocytes 5 were calcified chondrocytes with high expression of FN1 (chondrocytes 4 and chondrocytes 5 were found for the first time in a study of single-cell transcriptome sequencing of disc tissue). Cell trajectory analysis revealed that chondrocyte 1 was at the beginning of the trajectory and chondrocyte 3 was at the end of the trajectory, while chondrocyte 5 appeared first in the trajectory relative to chondrocyte 2 and chondrocyte 4. Conclusion: After functional identification of the specifically expressed genes in five chondrocytes, it was found that chondrocyte 1 was a chondrocyte with high expression of COL2A1, COL9A2, COL11A2, and CHRDL2 in a high proportion of NNP cells, and chondrocyte 3 was a fibrochondrocyte with high expression of COL1A1, COL6A3, COL1A2, COL3A1, AQP1, and COL15A1 in an increased proportion during nucleus pulposus cell degeneration. Through cell trajectory analysis, it was found that chondrocytes 5 specifically expressing FN1, SESN2, and GDF15 may be the key cells leading to degeneration of nucleus pulposus cells. Chondrocytes 2 expressing MGP, MT1G, and GPX3 may play a role in reversing calcification and degeneration, and chondrocytes 4 expressing PTGES, TREM1, and TIMP1 may play a role in disc degeneration pain and inflammation.

7.
J Biomed Nanotechnol ; 18(2): 481-487, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35484742

RESUMEN

This study aimed to analyze the application of a responsive nano-drug-loading system in injury model of articular chondrocyte in rabbits, as well as its effect on expression of matrix metalloprotein 13 (MMP13). The nanoprecipitation method was adopted to prepare camptothecin (CPT)-loaded poly ethylene glycol (PEG)-Poly caprolactone (PCL) and PEG-PCL nanoparticles without CPT. Afterward, the above mentioned nano-drug-loaded system was used to treat an in vitro scratch model of articular chondrocytes. According to different treatment plans, they were divided into groups: G0 (administered CPT-PEG-PCL nanomedicine), G1 (administered PEG-PCL drug), G2 (saline control), and G3 (healthy control). Results showed that the drug-loading capacity and efficiency of CPT-PEG-PCL was higher than that of PEG-PCL. The levels of type II collagen and hyaluronic acid in G0 was higher than that in G1 and G2. The levels of type II collagen and hyaluronic acid in G0 were not obviously different from those in G3. The level of MMP13 in G0 was lower than that in G1 and G2 and the level of tissue inhibitor of metalloproteinases 1 (TIMP1) in G0 was higher than that in G1 and G2. The proliferation activity of cells in G0 was higher than that in G1 and G2, but there was no obvious difference when compared with G3. In conclusion, CPT-PEG-PCL has stronger long-term circulation capacity and drug-loading efficiency. It can effectively up-regulate the levels of type II collagen, hyaluronic acid, and TIMP1, as well as reduce the synthesis and secretion of MMP13 and promote the repair of articular cartilage damage.


Asunto(s)
Metaloproteínas , Nanopartículas , Animales , Condrocitos , Colágeno Tipo II , Ácido Hialurónico , Metaloproteinasa 13 de la Matriz , Nanopartículas/uso terapéutico , Poliésteres , Polietilenglicoles , Conejos
8.
Front Pharmacol ; 12: 721200, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413778

RESUMEN

Aims: To explore the role of the Sphingosine 1-Phosphate (S1P)/Receptor2 (S1PR2) pathway in thrombin-induced hyperpermeability (TIP) and to test whether bivalirudin can reverse TIP via the S1P-S1PRs pathway. Methods and Results: Using western blot, we demonstrated that Human umbilical vein endothelial cells (HUVECs) that were cultured with 2 U/ml thrombin showed significantly increased S1PR2 expression while S1PR1and three kept unchanged. Such increment was attenuated by JTE-013 pretreatment and by presence of bivalirudin. Exposure of 2 U/ml of thrombin brought a higher level of S1P both intracellularly and extracellularly within the HUVECs by using ELISA detecting. Thrombin induced S1P and S1PR2 increment was restored by usage of PF543 and bivalirudin. Bivalirudin alone did not influenced the level of S1P and S1PR1,2, and S1PR3 compare to control group. As a surrogate of cytoskeleton morphology, phalloidin staining and immunofluorescence imaging were used. Blurry cell edges and intercellular vacuoles or spaces were observed along thrombin-exposed HUVECs. Presence of JTE-013 and bivalirudin attenuated such thrombin-induced permeability morphological change and presence of heparin failed to show the protective effect. Transwell chamber assay and probe assay were used to measure and compare endothelial permeability in vitro. An increased TIP was observed in HUVECs cultured with thrombin, and coculture with bivalirudin, but not heparin, alleviated this increase. JTE-013 treatment yielded to similar TIP alleviating effect. In vivo, an Evans blue assay was used to test subcutaneous and organ microvascular permeability after the treatment of saline only, thrombin + saline, thrombin + bivalirudin, thrombin + heparin or thrombin + JTE-013. Increased subcutaneous and organ tissue permeability after thrombin treatment was observed in thrombin + saline and thrombin + heparin groups while treatment of bivalirudin and JTE-013 absent this effect. Conclusion: S1P/S1PR2 mediates TIP by impairing vascular endothelial barrier function. Unlike heparin, bivalirudin effectively blocked TIP by inhibiting the thrombin-induced S1P increment and S1PR2 expression, suggesting the novel endothelial protective effect of bivalirudin under pathological procoagulant circumstance.

9.
Pharmazie ; 76(5): 195-201, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33964992

RESUMEN

The effects of eight oral anti-coronavirus drugs (lopinavir, ritonavir, chloroquine, darunavir, ribavirin, arbidol, favipiravir, oseltamivir) on the metabolism of four specific glycosides (polydatin, geniposide, quercitrin, glycyrrhizin) and on the activities of three major glycosidases (ß-glucosidase, α-rhamnosidase, ß-glucuronidase) from gut microflora were explored in vitro and determined by LC-MS/MS. The metabolism of polydatin, geniposide, quercitrin and glycyrrhizin was significantly inhibited by one or several anti-coronavirus drugs of 100 µM around 1 h and 4 h (P<0.05), among which darunavir could strongly reduce the production of genipin (70.6% reduction), quercitin (80.6% reduction) and glycyrrhetinic acid (37.9% reduction), which may cause a high risk of herb-drug interactions (HDI). Additionally, chloroquine reduced the production of genipin and quercitin by more than 75% (P<0.05), whereas arbidol had no significant influence on the metabolism of polydatin, quercitrin and glycyrrhizin (P>0.05) so that its risk may be lower. The inhibition of darunavir on ß-glucosidase was relatively strong (IC50 = 193±23 µM), and the inhibition became weaker on ß-glucuronidase and α-rhamnosidase (IC50>500 µM). The consistency between gut microflora and glycosidase system indicated that the inhibition of darunavir on the activity of ß-glucosidase and ß-glucuronidase may be the main reason for affecting the metabolism of geniposide, glycyrrhizin and polydatin in gut microflora. However, for the inhibition of darunavir and chloroquine on the metabolism of quercetrin, there was no correlation between gut microflora and α-rhamnosidase system. Assessing the risk of HDI mediated by glycosidases in gut microflora may be conducive to the safety and efficacy of combining traditional herbal and Western medicine for the treatment of patients with Covid-19.


Asunto(s)
Antivirales/efectos adversos , Tratamiento Farmacológico de COVID-19 , Microbioma Gastrointestinal , Glicósido Hidrolasas/metabolismo , Glicósidos/metabolismo , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Cloroquina/farmacología , Darunavir/farmacología , Humanos , Seguridad del Paciente , Preparaciones de Plantas/efectos adversos , Espectrometría de Masas en Tándem
10.
Oxid Med Cell Longev ; 2020: 7865395, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32963702

RESUMEN

AIMS: Forkhead box C1 (FoxC1) is essential for maintaining the hair follicle stem cell niche. The role of FoxC1 in maintaining mesenchymal stem cell (MSC) niches after myocardial infarction (MI) has not been directly determined to date. In this study, we determined to explore the possible roles and mechanisms of FoxC1 on MSC survival and function in the ischemic niche. METHODS AND RESULTS: MI model was established in this study, and expression level of FoxC1 was overexpressed or knocked down through efficient delivery of FoxC1 transfection or siFoxC1. Fifteen days later, the animals were allocated randomly to receive phosphate-buffered saline (PBS) injection or MSC transplantation. We identified FoxC1 as a key regulator of maintaining the vascular niche in the infarcted hearts (IHs) by driving proangiogenic and anti-inflammatory cytokines while repressing inflammatory and fibrotic factor expression. This vascular niche improved MSC survival and capacity in the IHs. Importantly, FoxC1 interacted with MSCs and was required for vessel specification and differentiation of engrafted MSCs in the ischemic niches, promoting myocardial repair. Inhibiting FoxC1 abolished these effects. CONCLUSION: These results definitively implicate FoxC1 signaling in maintaining ischemic vascular niche, which may be helpful in myocardial repair induced by MSC therapy.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Infarto del Miocardio/patología , Miocardio/patología , Cicatrización de Heridas , Animales , Diferenciación Celular , Supervivencia Celular , Microambiente Celular , Fibrosis , Factores de Transcripción Forkhead/genética , Inflamación/patología , Macrófagos/patología , Isquemia Miocárdica/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Neovascularización Fisiológica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Endogámicas Lew , Regulación hacia Arriba
11.
Oncol Lett ; 20(5): 168, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32934735

RESUMEN

Ovarian cancer is the seventh most common cancer and the second most common cause of cancer-associated mortality among gynecological malignancies worldwide. The combination of antimitotic agents, such as taxanes, and the DNA-damaging agents, such as platinum compounds, is the standard treatment for ovarian cancer. However, due to chemoresistance, development of novel therapeutic strategies for the treatment of ovarian cancer remains critical. Amentoflavone (AMF) is a biflavonoid derived from the extracts of Selaginella tamariscina, which has been used as a Chinese herb for thousands of years. A previous study demonstrated that AMF inhibits angiogenesis of endothelial cells and induces apoptosis in hypertrophic scar fibroblasts. In order to check the influence of AMF on cell proliferation, the effects of AMF on cell cycle and DNA damage were measured by cell viability, flow cytometry, immunofluorescence and western blotting assays in SKOV3 cells, an ovarian cell line. In the present study, treatment with AMF inhibited ovarian cell proliferation, increased P21 expression, decreased CDK1/2 expression, interrupted the balance of microtubule dynamics and arrested cells at the G2 phase. Furthermore, treatment with AMF increased the expression levels of phospho-Histone H2AX (γ-H2AX; a variant of histone 2A, that belongs to the histone 2A family member X) and the DNA repair protein RAD51 homolog 1 (Rad51), indicating the occurrence of DNA damage since γ-H2AX and Rad51 are both key markers of DNA damage. Consistent with previous findings, the results of the present study suggest that AMF is a potential therapeutic agent for the treatment of ovarian cancer. In addition, the effects of AMF on cell cycle arrest and DNA damage induction may be the molecular mechanisms by which AMF might exert its potential therapeutic benefits in ovarian cancer.

12.
J Orthop Translat ; 22: 101-108, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32440505

RESUMEN

BACKGROUND: Bone-tendon junction (BTJ) is a unique structure connecting tendon and bone through a fibrocartilage zone. Owing to its unique structure, the regeneration of BTJ remains a challenge. Here, we study the fibrochondrogenic differentiation of human tendon-derived stem/progenitor cells (TSPCs) both in vitro and in vivo. METHODS: TSPCs were isolated from human patellar tendon tissues and investigated for their multidifferentiation potential. TSPCs were cultured in chondrogenic medium with transforming growth factor beta 3 (TGF-ß3) and BMP-2 in vitro â€‹and examined for the expression of fibrochondrogenic marker genes by quantitative real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and immunofluorescence. TSPCs pretreated were also seeded in collage II sponge and then transplanted in immunocompromised nude mice to examine if the fibrochondrogenic characteristics were conserved in vivo. RESULTS: We found that TSPCs were differentiated towards fibrochondrogenic lineage, accompanied by the expression of collagen I, collagen II, SRY-box transcription factor 9 (Sox 9), and tenascin C. Furthermore, after TSPCs were seeded in collagen II sponge and transplanted in immunocompromised nude mice, they expressed fibrochondrogenic genes, including proteoglycan, collagen I, and collagen II. CONCLUSION: Taken together, this study showed that TSPCs are capable of differentiating towards fibrocartilage-like cells, and the fibrochondrogenic characteristics were conserved even in vivo, and thus might have the potential application for fibrocartilage regeneration in BTJ repair. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: TSPCs are able to differentiate into fibrocartilage-like cells and thus might well be one potential cell source for fibrocartilage regeneration in a damaged BTJ repair.

13.
Cancer Biol Ther ; 21(3): 213-222, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31651209

RESUMEN

Enhancer of zeste homolog 2 (EZH2) is an important member of the epigenetic regulatory factor polycomb group proteins (PcG) and is abnormally expressed in a wide variety of tumors, including osteosarcoma. Scientists consider EZH2 as an attractive target for the treatment of osteosarcoma and have found many potential EZH inhibitors, such as GlaxoSmithKline 343 (GSK343). It has been reported that GSK343 can be used as an inhibitor in different types of cancer. This study demonstrated that GSK343 not only induced apoptosis by increasing cleaved Casp-3 and poly ADP-ribose polymerase (PARP) expression, but also induced autophagic cell death by inhibiting p62 expression. Apoptosis and autophagic cell death induced by GSK343 were confirmed by the high expression of cleaved caspase-3, LC3-II and transmission electron microscopy. GSK343 inhibited the expression of EZH2 and c-Myc. Additionally, GSK343 inhibited the expression of FUSE binding protein 1 (FBP1), which was identified by its regulatory effects on c-Myc expression. Since c-Myc is a common target of EZH2 and FBP1, and GSK343 inhibited the expression of these proliferation-promoting proteins, a mutual regulatory mechanism between EZH2 and FBP1 was proposed. The knockdown of EZH2 suppressed the expression of FBP1; similarly, the knockdown of FBP1 suppressed the expression of EZH2. These results suggest the mutual regulatory association between EZH2 and FBP1. The knockdown of either EZH2 or FBP1 accelerated the sensitivity of osteosarcoma cells to GSK343. Based on these results, this study clarified that GSK343, an EZH2 inhibitor, may have potential for use in the treatment of osteosarcoma. The underlying mechanisms of the effects of GSK343 are partly mediated by its inhibitory activity against c-Myc and its regulators (EZH2 and FBP1).


Asunto(s)
Apoptosis , Neoplasias Óseas/patología , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Indazoles/farmacología , Osteosarcoma/patología , Piridonas/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Proliferación Celular , Inhibidores Enzimáticos/farmacología , Fructosa-Bifosfatasa/antagonistas & inhibidores , Humanos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Células Tumorales Cultivadas
14.
Environ Sci Pollut Res Int ; 26(16): 15894-15904, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30963434

RESUMEN

Management procedures (MPs) based on data-limited methods (DLMs) recently developed to give management advices for data-limited stocks worldwide are scarce or yet to be implemented on freshwater species. In this study, case studies (CSs) were developed using length-frequency data (LFD) of common carp species harvested from Dianshan Lake to estimate life-history parameters from existing methods. These CSs were later used to examine their influences when tested with various MPs under scenarios when operating models (OMs) were subjected to observation and estimation uncertainties. The results after management strategy evaluation (MSE) was run for various defined OMs showed that three MPs emerged best for providing managing advice. For high yield to be maintained during short-term periods, MinlenLopt1 suggested the smallest length at full retention (sLFR) to be 42.11 cm; while Slotlim and matlenlim2 suggested that to maintain biomass and stable spawning biomass (SBMSY) and also avoid overfishing from occurring in this fishery, sLFR should be 56.1 cm. Values given by these MPs allowed the removal of species that spawned at least once. Also, life-history parameters derived from CS4 presented the best results, being more reliable in presenting better inputs for effective management of the said fishery.


Asunto(s)
Carpas/fisiología , Explotaciones Pesqueras/organización & administración , Animales , Biomasa , China , Conservación de los Recursos Naturales/métodos , Lagos , Modelos Teóricos , Dinámica Poblacional , Incertidumbre
15.
Oncol Rep ; 41(4): 2321-2328, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30720119

RESUMEN

Ovarian cancer is the third most common type of gynecological tumor, in addition to being the most lethal. Cytoreductive surgery with chemotherapy is the standard treatment for ovarian cancer. It is necessary to identify novel chemotherapeutic methods, since current chemotherapy treatments are rarely effective for patients with advanced­stage or recurrent ovarian cancer and may cause acute systemic toxicity. Icariin (ICA) is a prenylated flavonol glycoside derived from Herba Epimedii, a medicinal plant with a variety of pharmacological activities, including anticancer, antidiabetic and anti­obesity effects. By analyzing cell viability, cell cycle and cell migration, the present study demonstrated that ICA inhibited the cell viability of the ovarian cancer cell line, SKOV3, and blocked cell cycle transition. ICA inhibited the expression of fuse binding protein 1 (FBP1), a critical regulator of proliferation and tumorigenesis through binding to the c­Myc promoter, as well as ß­catenin, a key regulator in ovarian cancer initiation, metastasis, chemoresistance and recurrence. Furthermore, it was indicated that ICA inhibited the migration of SKOV3 cells. In accordance with our previous findings on high FBP1 expression in ovarian cancer, FBP1 was a potential target of ICA in ovarian cancer cells. Based on these results, the present study demonstrated that ICA may be a potential therapeutic agent for ovarian cancer treatment.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Flavonoides/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Flavonoides/uso terapéutico , Humanos , Neoplasias Ováricas/patología
17.
Oncol Lett ; 16(2): 1682-1688, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30008853

RESUMEN

Epithelial ovarian cancer (EOC) is the fifth most common malignancy in women, with a 5-year mortality of >70% in North America. As the symptoms are often not observed until the cancer has spread extensively, few women are diagnosed at an early stage of disease. Large-scale gene expression analyses have identified molecular subtypes within high-grade ovarian cancer with variable survival rates and drug resistance. The understanding of gene expression, the mechanisms underlying cancer processes and drug resistances have facilitated the development of targeted therapies. The far-upstream element (Fuse)-binding protein 1 (FBP1) is overexpressed in a number of malignancies such as hepatocellular carcinoma, and has been identified as an oncoprotein. In our early studies, FBP1 was demonstrated to physically interact with p53 and suppresses p53 transcription activity. In the present study, FBP1 expression increased as ovarian cancer developed. Among ovarian normal, adenoma and carcinoma tissues, the highest FBP1 expression was identified in carcinoma tissues. Furthermore FBP1 did not influence the apoptosis of ovarian carcinoma cells, yet enhanced cell cycle transition and metastasis. Therefore, it was hypothesized that FBP1 promotes ovarian cancer development through the acceleration of cell cycle transition and metastasis, and FBP1 is a novel potential biological marker for epithelial ovarian cancer diagnosis.

18.
Dis Markers ; 2018: 9405738, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30008976

RESUMEN

We first applied moderate fluid shear stress to nucleus pulposus cells. The correlation of AP-1 with type II collagen, proteoglycan, Cytokeratin 8 protein, MAP-1, MAP-2, and MAP-4 and the correlation of AP-1 with IL-1ß, TNF-α, IL-6, IL-8, MIP-1, MCP-1, and NO were detected. Our results document that moderate fluid shear stress could activate the FAK-MEK5-ERK5-cFos-AP1 signaling pathway. AP1 could downregulate the construct factors of cytoskeleton such as type II collagen, proteoglycan, Cytokeratin 8 protein, MAP-1, MAP-2, and MAP-4 in nucleus pulposus cell after the fluid shear stress was loaded. AP1 could upregulate the inflammatory factors such as IL-1ß, TNF-α, IL-6, IL-8, MIP-1, MCP-1, and NO in nucleus pulposus cell after the fluid shear stress was loaded. Taken together, our data suggested that moderate fluid shear stress may play an important role in the cytoskeleton of nucleus pulposus and surrounding inflammatory mediators by activating the FAK-MEK5-ERK5-cFos-AP1 signaling pathway, thereby affecting cell degeneration.


Asunto(s)
Citocinas/metabolismo , Citoesqueleto/metabolismo , Mecanotransducción Celular , Núcleo Pulposo/metabolismo , Transducción de Señal , Estrés Mecánico , Línea Celular , Citocinas/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , MAP Quinasa Quinasa 5/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Proteínas Oncogénicas v-fos/metabolismo , Factor de Transcripción AP-1/metabolismo
19.
Oncol Lett ; 14(5): 5819-5824, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29113212

RESUMEN

Epithelial ovarian cancer (EOC) affects almost 25,000 women annually and is the fifth most common malignancy in women in North America. A combination of surgery and cytotoxic chemotherapy may produce a favorable clinical response. The platinum-paclitaxel combination regimen is the chemotherapy gold-standard for advanced ovarian cancer, and carboplatin is one of the agents in this combination therapy. However, the majority of patients eventually experience a relapse due to the development of platinum resistance. FUSE binding protein 1 (FBP1) has been identified as an anti-apoptotic and pro-proliferative oncoprotein that is overexpressed in hepatocellular carcinoma. Its high expression is also associated with carboplatin resistance. In the present study, it was identified that the expression of FBP1 was significantly higher in EOC tissues than in normal epithelial ovarian or in epithelial ovarian adenoma tissue. FBP1 expression was significantly correlated with the grade of epithelial ovarian cancer. Carboplatin inhibited the expression of FBP1 in epithelial ovarian cancer cells and the knockdown of FBP1 enhanced the inhibition of cell viability and migration by carboplatin. In addition to FBP1, carboplatin also inhibited the expression of ß-catenin and matrix metalloproteinase (MMP)-9. Furthermore, the expression of ß-catenin and MMP-9 were lower in FBP1 knockdown cells compared with control EOC cells. FBP1 may thus serve a role in the regulation of the expression of ß-catenin and MMP-9; the inhibition of ß-catenin and MMP-9 by carboplatin may be mediated through the inhibition of FBP1. The inhibition of FBP1 expression by carboplatin may be a mechanism in the treatment of EOC by carboplatin.

20.
Biochem Biophys Res Commun ; 490(4): 1414-1419, 2017 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-28709868

RESUMEN

P53 is a famous cancer suppressor and plays key roles in metabolism. Intervertebral disc (IVD) is the largest avascular cartilaginous structure in humans and its degeneration is a common cause of spine diseases initiated from damaged nucleus pulposus (NP) cells. The potential cause of disc degeneration has been attributed to aging, genetic factors, mechanical factors and nutrition. In this study, we found that p53 decreased and leaked to the cytoplasm in NP cells as the glucose level decreases, in contrast to cancer cells in which p53 increases and concentrates to the nuclei. Comparing with in p53 knockdown NP cells, relative high p53 expression in normal control NP cells inhibited autophagy and the pentose phosphate pathway. Furthermore, the expression of Sox 9 and type II collagen were higher in p53 normal control than p53 knockdown NP cells. Based on these results, we believe that relative high p53 facilitates NP cell viability and integrity.


Asunto(s)
Condrocitos/efectos de los fármacos , Glucosa/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Núcleo Pulposo/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Condrocitos/citología , Condrocitos/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Núcleo Pulposo/citología , Núcleo Pulposo/metabolismo , Vía de Pentosa Fosfato/efectos de los fármacos , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...