Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Phys Rev Lett ; 133(4): 046502, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39121411

RESUMEN

Understanding spin and lattice excitations in a metallic magnetic ordered system forms the basis to unveil the magnetic and lattice exchange couplings and their interactions with itinerant electrons. Kagome lattice antiferromagnet FeGe is interesting because it displays a rare charge density wave (CDW) deep inside the antiferromagnetic ordered phase that interacts with the magnetic order. We use neutron scattering to study the evolution of spin and lattice excitations across the CDW transition T_{CDW} in FeGe. While spin excitations below ∼100 meV can be well described by spin waves of a spin-1 Heisenberg Hamiltonian, spin excitations at higher energies are centered around the Brillouin zone boundary and extend up to ∼180 meV consistent with quasiparticle excitations across spin-polarized electron-hole Fermi surfaces. Furthermore, c-axis spin wave dispersion and Fe-Ge optical phonon modes show a clear hardening below T_{CDW} due to spin-charge-lattice coupling but with no evidence of a phonon Kohn anomaly. By comparing our experimental results with density functional theory calculations in absolute units, we conclude that FeGe is a Hund's metal in the intermediate correlated regime where magnetism has contributions from both itinerant and localized electrons arising from spin polarized electronic bands near the Fermi level.

2.
Nat Commun ; 15(1): 6467, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085284

RESUMEN

A hallmark of unconventional superconductors is a complex electronic phase diagram where intertwined orders of charge-spin-lattice degrees of freedom compete and coexist. While the kagome metals such as CsV3Sb5 also exhibit complex behavior, involving coexisting charge density wave order and superconductivity, much is unclear about the microscopic origin of the superconducting pairing. We study the vortex lattice in the superconducting state of Cs(V0.86Ta0.14)3Sb5, where the Ta-doping suppresses charge order and enhances superconductivity. Using small-angle neutron scattering, a strictly bulk probe, we show that the vortex lattice exhibits a strikingly conventional behavior. This includes a triangular symmetry with a period consistent with 2e-pairing, a field dependent scattering intensity that follows a London model, and a temperature dependence consistent with a uniform superconducting gap. Our results suggest that optimal bulk superconductivity in Cs(V1-xTax)3Sb5 arises from a conventional Bardeen-Cooper-Schrieffer electron-lattice coupling, different from spin fluctuation mediated unconventional copper- and iron-based superconductors.

3.
Gels ; 10(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38786217

RESUMEN

Fiber-particle-reinforced silica aerogels are widely applied in thermal insulation. Knowing their effective thermal conductivity (ETC) and radiative characteristics under high temperatures is necessary to improve their performance. This article first analyzes the radiation characteristics of silica aerogels doped with opacifier particles and reinforced fibers, and then a universal model is established to predict the ETC. Furthermore, the impacts of different parameters of opacifier particles and reinforced fibers on the thermal insulation performance of silica aerogels are investigated. The results indicate that SiC exhibits comparatively strong absorption characteristics, making it a good alternative for opacifiers to improve thermal insulation performance under high temperatures. For the given type and volume fraction of opacifier particles, there exists an optimal diameter and volume fraction to achieve the best insulation performance of silica aerogel under a certain temperature. Considering that SiO2 fibers exhibit a limited extinction capability and higher conductive thermal conductivity under high temperatures, for fiber-particle-reinforced silica aerogels, it is beneficial for their insulation performance to reduce the fiber volume fraction when the required mechanical properties are satisfied.

4.
Sci Adv ; 10(22): eadk1113, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38809973

RESUMEN

Water purification via interfacial solar steam generation exhibits promising potential. However, salt crystallization on evaporators reduces solar absorption and obstructs water supply. To address it, a waffle-shaped solar evaporator (WSE) has been designed. WSE is fabricated via a zinc-assisted pyrolysis route, combining low-cost biomass carbon sources, recyclable zinc, and die-stamping process. This route enables cost-effective production without the need of sophisticated processing. As compared to conventional plane-shaped evaporators, WSE is featured by extra sidewalls for triggering the convection with the synergistic solute and thermal Marangoni effects. Consequently, WSE achieves spontaneous salt rejection and durable evaporation stability. It has demonstrated continuous operation for more than 60 days in brine without fouling.

5.
Nat Commun ; 15(1): 2739, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548765

RESUMEN

Non-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet Fe5-δGeTe2. We show that the switching is enabled by the ordering and disordering of Fe site vacancies that results in distinct crystalline symmetries of the two phases, which can be controlled by a thermal annealing and quenching method. The two phases are distinguished by the presence of topological nodal lines due to the preserved global inversion symmetry in the site-disordered phase, flat bands resulting from quantum destructive interference on a bipartite lattice, and broken inversion symmetry in the site-ordered phase.

6.
Nat Commun ; 15(1): 1918, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429271

RESUMEN

The combination of a geometrically frustrated lattice, and similar energy scales between degrees of freedom endows two-dimensional Kagome metals with a rich array of quantum phases and renders them ideal for studying strong electron correlations and band topology. The Kagome metal, FeGe is a noted example of this, exhibiting A-type collinear antiferromagnetic (AFM) order at TN ≈ 400 K, then establishes a charge density wave (CDW) phase coupled with AFM ordered moment below TCDW ≈ 110 K, and finally forms a c-axis double cone AFM structure around TCanting ≈ 60 K. Here we use neutron scattering to demonstrate the presence of gapless incommensurate spin excitations associated with the double cone AFM structure of FeGe at temperatures well above TCanting and TCDW that merge into gapped commensurate spin waves from the A-type AFM order. Commensurate spin waves follow the Bose factor and fit the Heisenberg Hamiltonian, while the incommensurate spin excitations, emerging below TN where AFM order is commensurate, start to deviate from the Bose factor around TCDW, and peaks at TCanting. This is consistent with a critical scattering of a second order magnetic phase transition with decreasing temperature. By comparing these results with density functional theory calculations, we conclude that the incommensurate magnetic structure arises from the nested Fermi surfaces of itinerant electrons and the formation of a spin density wave order.

7.
Bioorg Med Chem ; 100: 117611, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309200

RESUMEN

Systemic inflammatory response syndrome (SIRS), an exaggerated defense response of the organism to a noxious stressor, involves a massive inflammatory cascade that ultimately leads to reversible or irreversible end-organ dysfunction and even death. Suppressing RIPK1, a key protein in necroptosis pathway, has been proven to be an effective therapeutic strategy for inflammation and SIRS. In this study, a series of novel biaryl benzoxazepinone RIPK1 inhibitors were designed and synthesized by introducing different aryl substituents at the C7 position of benzoxazepinone. As a result, p-cyanophenyl substituted analog 19 exhibited the most potent in vitro anti-necroptotic effect in HT-29 cells (EC50 = 1.7 nM) and superior protection against temperature loss and death in mice in the TZ-induced SIRS model compared to GSK'772. What's more, in vivo analysis of the levels of inflammatory factors in mice also revealed that compound 19 had better anti-inflammatory activity than GSK'772.


Asunto(s)
Inflamación , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Síndrome de Respuesta Inflamatoria Sistémica , Animales , Humanos , Ratones , Apoptosis , Células HT29 , Inflamación/metabolismo , Necrosis , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/inducido químicamente , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Azepinas/química , Azepinas/farmacología
8.
Nanomaterials (Basel) ; 13(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686947

RESUMEN

The design and fabrication of low-cost catalysts for highly efficient oxygen reduction are of paramount importance for various renewable energy-related technologies, such as fuel cells and metal-air batteries. Herein, we report the synthesis of Fe3N nanoparticle-encapsulated N-doped carbon nanotubes on the surface of a flexible biomass-derived carbon cloth (Fe3N@CNTs/CC) via a simple one-step carbonization process. Taking advantage of its unique structure, Fe3N@CNTs/CC was employed as a self-standing electrocatalyst for oxygen reduction reaction (ORR) and possessed high activity as well as excellent long-term stability and methanol resistance in alkaline media. Remarkably, Fe3N@CNT/CC can directly play the role of both a gas diffusion layer and an electrocatalytic cathode in a zinc-air battery without additional means of catalyst loading, and it displays higher open-circuit voltage, power density, and specific capacity in comparison with a commercial Pt/C catalyst. This work is anticipated to inspire the design of cost-effective, easily prepared, and high-performance air electrodes for advanced electrochemical applications.

9.
Molecules ; 28(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687208

RESUMEN

With the swift advancement of the wearable electronic devices industry, the energy storage components of these devices must possess the capability to maintain stable mechanical and chemical properties after undergoing multiple bending or tensile deformations. This circumstance has expedited research efforts toward novel electrode materials for flexible energy storage devices. Nonetheless, among the numerous materials investigated to date, the incorporation of metal current collectors or insulative adhesives remains requisite, which entails additional costs, unnecessary weight, and high contact resistance. At present, biomass-derived flexible architectures stand out as a promising choice in electrochemical energy device applications. Flexible self-supporting properties impart a heightened mechanical performance, obviating the need for additional binders and lowering the contact resistance. Renewable, earth-abundant biomass endows these materials with cost-effectiveness, diversity, and modulable chemical properties. To fully exploit the application potential in biomass-derived flexible carbon architectures, understanding the latest advancements and the comprehensive foundation behind their synthesis assumes significance. This review delves into the comprehensive analysis of biomass feedstocks and methods employed in the synthesis of flexible self-supporting carbon electrodes. Subsequently, the advancements in their application in energy storage devices are elucidated. Finally, an outlook on the potential of flexible carbon architectures and the challenges they face is provided.

10.
Angew Chem Int Ed Engl ; 62(46): e202312029, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37747695

RESUMEN

Flue gas desulfurization is crucial for both human health and ecological environments. However, developing efficient SO2 adsorbents that can break the trade-off between adsorption capacity and selectivity is still challenging. In this work, a new type of fluorinated anion-pillared metal-organic frameworks (APMOFs) with a pillar-cage structure is fabricated through pillar-embedding into a highly porous and robust framework. This type of APMOFs comprises smaller tetrahedral cages and larger icosahedral cages interconnected by embedded [NbOF5 ]2- and [TaOF5 ]2- anions acting as pillars. The APMOFs exhibits high porosity and density of fluorinated anions, ensuring exceptional SO2 adsorption capacity and ultrahigh selectivity for SO2 /CO2 and SO2 /N2 gas mixtures. Furthermore, these two structures demonstrate excellent stability towards water, acid/alkali, and SO2 adsorption. Cycle dynamic breakthrough experiments confirm the excellent separation performance of SO2 /CO2 gas mixtures and their cyclic stability. SO2 -loaded single-crystal X-ray diffraction, Grand canonical Monte Carlo (GCMC) simulations combined with density functional theory (DFT) calculations reveal the preferred adsorption domains for SO2 molecules. The multiple-site host-guest and guest-guest interactions facilitate selective recognition and dense packing of SO2 in this hybrid porous material. This work will be instructive for designing porous materials for flue gas desulfurization and other gas-purification processes.

11.
Nano Lett ; 23(15): 6927-6936, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37489836

RESUMEN

Boron nitride (BN) is an exceptional material, and among its polymorphs, two-dimensional (2D) hexagonal and three-dimensional (3D) cubic BN (h-BN and c-BN) phases are most common. The phase stability regimes of these BN phases are still under debate, and phase transformations of h-BN/c-BN remain a topic of interest. Here, we investigate the phase stability of 2D/3D h-BN/c-BN nanocomposites and show that the coexistence of two phases can lead to strong nonlinear optical properties and low thermal conductivity at room temperature. Furthermore, spark-plasma sintering of the nanocomposite shows complete phase transformation to 2D h-BN with improved crystalline quality, where 3D c-BN possibly governs the nucleation and growth kinetics. Our demonstration might be insightful in phase engineering of BN polymorph-based nanocomposites with desirable properties for optoelectronics and thermal energy management applications.

12.
Nat Commun ; 14(1): 2051, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045810

RESUMEN

Magnetic order in most materials occurs when magnetic ions with finite moments arrange in a particular pattern below the ordering temperature. Intriguingly, if the crystal electric field (CEF) effect results in a spin-singlet ground state, a magnetic order can still occur due to the exchange interactions between neighboring ions admixing the excited CEF levels. The magnetic excitations in such a state are spin excitons generally dispersionless in reciprocal space. Here we use neutron scattering to study stoichiometric Ni2Mo3O8, where Ni2+ ions form a bipartite honeycomb lattice comprised of two triangular lattices, with ions subject to the tetrahedral and octahedral crystalline environment, respectively. We find that in both types of ions, the CEF excitations have nonmagnetic singlet ground states, yet the material has magnetic order. Furthermore, CEF spin excitons from the tetrahedral sites form a dispersive diffusive pattern around the Brillouin zone boundary, likely due to spin entanglement and geometric frustrations.

13.
J Am Chem Soc ; 145(11): 6184-6193, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36893194

RESUMEN

Hexagonal boron nitride (h-BN) is regarded as one of the most efficient catalysts for oxidative dehydrogenation of propane (ODHP) with high olefin selectivity and productivity. However, the loss of the boron component under a high concentration of water vapor and high temperature seriously hinders its further development. How to make h-BN a stable ODHP catalyst is one of the biggest scientific challenges at present. Herein, we construct h-BN⊃xIn2O3 composite catalysts through the atomic layer deposition (ALD) process. After high-temperature treatment in ODHP reaction conditions, the In2O3 nanoparticles (NPs) are dispersed on the edge of h-BN and observed to be encapsulated by ultrathin boron oxide (BOx) overlayer. A novel strong metal oxide-support interaction (SMOSI) effect between In2O3 NPs and h-BN is observed for the first time. The material characterization reveals that the SMOSI not only improves the interlayer force between h-BN layers with a pinning model but also reduces the affinity of the B-N bond toward O• for inhibiting oxidative cutting of h-BN into fragments at a high temperature and water-rich environment. With the pinning effect of the SMOSI, the catalytic stability of h-BN⊃70In2O3 has been extended nearly five times than that of pristine h-BN, and the intrinsic olefin selectivity/productivity of h-BN is well maintained.

14.
Nano Lett ; 23(5): 2023-2030, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36797055

RESUMEN

Topological phonons and magnons potentially enable low-loss, quantum coherent, and chiral transport of information and energy at the atomic scale. Van der Waals magnetic materials are promising to realize such states due to their recently discovered strong interactions among the electronic, spin, and lattice degrees of freedom. Here, we report the first observation of coherent hybridization of magnons and phonons in monolayer antiferromagnet FePSe3 by cavity-enhanced magneto-Raman spectroscopy. The robust magnon-phonon cooperativity in the 2D limit occurs even in zero magnetic field, which enables nontrivial band inversion between longitudinal and transverse optical phonons caused by the strong coupling with magnons. The spin and lattice symmetry theoretically guarantee magnetic-field-controlled topological phase transition, verified by nonzero Chern numbers calculated from the coupled spin-lattice model. The 2D topological magnon-phonon hybridization potentially offers a new route toward quantum phononics and magnonics with an ultrasmall footprint.

15.
Nanomaterials (Basel) ; 13(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36678037

RESUMEN

A rational design of transition metal catalysts to achieve selective hydrogenation of furfural (FFR) to tetrahydrofurfuryl alcohol (THFA) under facile conditions is a promising option. In this work, a series of Ni catalysts were synthesized by controlled thermal treatment of Ni-based metal-organic frameworks (MOFs), with the purpose of modulating the interface of nickel nanoparticles by the reticular coordination in MOF precursors. The catalytic performance indicates that Ni/C catalyst obtained at 400 °C exhibits efficient conversion of FFR (>99%) and high selectivity to THFA (96.1%), under facile conditions (80 °C, 3 MPa H2, 4.0 h). The decomposition of MOF at low temperatures results in highly dispersed Ni0 particles and interfacial charge transfer from metal to interstitial carbon atoms induced by coordination in MOF. The electron-deficient Ni species on the Ni surface results in an electropositive surface of Ni nanoparticles in Ni/C-400, which ameliorates furfural adsorption and enhances the hydrogen heterolysis process, finally achieving facile hydrogenation of FFR to THFA.

16.
Nat Commun ; 14(1): 153, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631467

RESUMEN

Unconventional superconductors often feature competing orders, small superfluid density, and nodal electronic pairing. While unusual superconductivity has been proposed in the kagome metals AV3Sb5, key spectroscopic evidence has remained elusive. Here we utilize pressure-tuned and ultra-low temperature muon spin spectroscopy to uncover the unconventional nature of superconductivity in RbV3Sb5 and KV3Sb5. At ambient pressure, we observed time-reversal symmetry breaking charge order below [Formula: see text] 110 K in RbV3Sb5 with an additional transition at [Formula: see text] 50 K. Remarkably, the superconducting state displays a nodal energy gap and a reduced superfluid density, which can be attributed to the competition with the charge order. Upon applying pressure, the charge-order transitions are suppressed, the superfluid density increases, and the superconducting state progressively evolves from nodal to nodeless. Once optimal superconductivity is achieved, we find a superconducting pairing state that is not only fully gapped, but also spontaneously breaks time-reversal symmetry. Our results point to unprecedented tunable nodal kagome superconductivity competing with time-reversal symmetry-breaking charge order and offer unique insights into the nature of the pairing state.

17.
IEEE Trans Neural Netw Learn Syst ; 34(10): 7210-7221, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35015654

RESUMEN

Actor-critic (AC) cooperative multiagent reinforcement learning (MARL) over directed graphs is studied in this article. The goal of the agents in MARL is to maximize the globally averaged return in a distributed way, i.e., each agent can only exchange information with its neighboring agents. AC methods proposed in the literature require the communication graphs to be undirected and the weight matrices to be doubly stochastic (more precisely, the weight matrices are row stochastic and their expectation are column stochastic). Differently from these methods, we propose a distributed AC algorithm for MARL over directed graph with fixed topology that only requires the weight matrix to be row stochastic. Then, we also study the MARL over directed graphs (possibly not connected) with changing topologies, proposing a different distributed AC algorithm based on the push-sum protocol that only requires the weight matrices to be column stochastic. Convergence of the proposed algorithms is proven for linear function approximation of the action value function. Simulations are presented to demonstrate the effectiveness of the proposed algorithms.

18.
ACS Omega ; 7(48): 44116-44123, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36506158

RESUMEN

Cobalt oxide (Co3O4) nanostructures with different morphologies (nanocubes, nanoplates, and nanoflowers) were synthesized by a simple hydrothermal method and used for catalytic oxidation of soot particles. Through the study of the physicochemical properties of the catalysts, the key factors affecting the performance of soot oxidation were investigated. The results showed that all three kinds of Co3O4 nanocrystals exhibited excellent low-temperature activity in catalytic oxidation of soot, and the Co3O4 nanoflowers showed higher oxidation activity of soot compared with Co3O4 nanocubes and Co3O4 nanoplates, whose T m was only 370 °C. The excellent activity of Co3O4 nanoflowers was due to the large amount of Co3+ and lattice oxygen on their surface and highly defective structure, which promoted the adsorption and activation of oxygen species. The large crystallite size and few surface defects were the main reasons for the poor catalytic performance of Co3O4 nanocubes. During soot oxidation, the crystallite size of the catalysts and the contact between the catalysts and soot played a significant role in the catalytic performance.

19.
Phys Rev Lett ; 129(16): 166401, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36306757

RESUMEN

Kagome materials often host exotic quantum phases, including spin liquids, Chern gap, charge density wave, and superconductivity. Existing scanning microscopy studies of the kagome charge order have been limited to nonkagome surface layers. Here, we tunnel into the kagome lattice of FeGe to uncover features of the charge order. Our spectroscopic imaging identifies a 2×2 charge order in the magnetic kagome lattice, resembling that discovered in kagome superconductors. Spin mapping across steps of unit cell height demonstrates the existence of spin-polarized electrons with an antiferromagnetic stacking order. We further uncover the correlation between antiferromagnetism and charge order anisotropy, highlighting the unusual magnetic coupling of the charge order. Finally, we detect a pronounced edge state within the charge order energy gap, which is robust against the irregular shape fluctuations of the kagome lattice edges. We discuss our results with the theoretically considered topological features of the kagome charge order including unconventional magnetism and bulk-boundary correspondence.

20.
Nature ; 609(7927): 490-495, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104552

RESUMEN

A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies1,2. A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge-separated stripes that compete with superconductivity1,2. Recently, such rich phase diagrams have also been shown in correlated topological materials. In 2D kagome lattice metals consisting of corner-sharing triangles, the geometry of the lattice can produce flat bands with localized electrons3,4, non-trivial topology5-7, chiral magnetic order8,9, superconductivity and CDW order10-15. Although CDW has been found in weakly electron-correlated non-magnetic AV3Sb5 (A = K, Rb, Cs)10-15, it has not yet been observed in correlated magnetic-ordered kagome lattice metals4,16-21. Here we report the discovery of CDW in the antiferromagnetic (AFM) ordered phase of kagome lattice FeGe (refs. 16-19). The CDW in FeGe occurs at wavevectors identical to that of AV3Sb5 (refs. 10-15), enhances the AFM ordered moment and induces an emergent anomalous Hall effect22,23. Our findings suggest that CDW in FeGe arises from the combination of electron-correlations-driven AFM order and van Hove singularities (vHSs)-driven instability possibly associated with a chiral flux phase24-28, in stark contrast to strongly correlated copper oxides1,2 and nickelates29-31, in which the CDW precedes or accompanies the magnetic order.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA