Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 448: 130983, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36860084

RESUMEN

The imbalance of nutrient elements in paddy soil could affect biogeochemical processes; however, how the key elements input influence microbially-driven conversion of mercury (Hg) to neurotoxic methylmercury (MeHg) remains virtually unknown. Herein, we conducted a series of microcosm experiments to explore the effects of certain species of carbon (C), nitrogen (N) and sulfur (S) on microbial MeHg production in two typical paddy soils (yellow and black soil). Results showed that the addition of C alone into the soils increased MeHg production approximately 2-13 times in the yellow and black soils; while the combined addition of N and C mitigated the C- promoting effect significantly. Added S also had a buffering effect on C-facilitated MeHg production in the yellow soil despite the extent being lower than that of N addition, whereas this effect was not obvious for the black soil. MeHg production was positively correlated with the abundance of Deltaproteobactera-hgcA in both soils, and the changes in MeHg production were related to the shifts of Hg methylating community resulting from C, N, and S imbalance. We further found that the changes in the proportions of dominant Hg methylators such as Geobacter and some unclassified groups could contribute to the variations in MeHg production under different treatments. Moreover, the enhanced microbial syntrophy with adding N and S might contribute to the reduced C-promoting effect on MeHg production. This study has important implications for better understanding of microbes-driven Hg conversion in paddies and wetlands with nutrient elements input.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Metilación , Nitrógeno , Azufre , Carbono , Suelo
2.
J Hazard Mater ; 407: 124700, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33333388

RESUMEN

Neurotoxic methylmercury (MeHg) in environments poses substantial risks to human health. Saturated sediments are basic sources of MeHg in food chains; however, distribution patterns and environmental drivers of MeHg at a global scale remain largely unexplored. Here, we characterized global patterns of MeHg distribution and environmental drivers of MeHg production based on 495 sediment samples across five typical ecosystems from the literature (1995-2018) and our own field survey. Our results showed the MeHg concentration ranged from 0.009 to 55.7 µg kg-1 across the different ecosystems, and the highest MeHg concentration and Hg methylation potential were from the sediments of paddy and marine environments, respectively. Further, using combined analysis of random forest and structural equation modeling, we identified temperature and precipitation as important regulators of MeHg production after accounting for the well-known drivers including Hg availability and sediment geochemistry. More importantly, we found increased MeHg production in sediments with elevated mean annual Hg precipitation, and warmer temperature could also accelerate MeHg production by facilitating activities of microbial methylators. Together, this work advances our understanding of global MeHg distribution in sediments and environmental drivers, which are fundamental to the prediction and management of MeHg production and its potential health risk globally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA