Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Exp Clin Cancer Res ; 42(1): 246, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37740243

RESUMEN

BACKGROUND: Gastric cancer (GC) is one of the most prevalent malignant tumors of the digestive system. As a hallmark of cancer, energy-related metabolic reprogramming is manipulated by multiple factors, including long non-coding RNAs (lncRNAs). Notably, lncRNA CCAT1 has been identified as a crucial regulator in tumor progression. Nevertheless, the precise molecular mechanisms underlying the involvement of CCAT1 in metabolic reprogramming of GC remain unclear. METHODS: Gain- and loss-of-function experiments were performed to evaluate the roles of CCAT1 in tumorigenesis and glycolysis of GC. Bioinformatics analyses and mechanistic experiments, such as mass spectrometry (MS), RNA-pulldown, and RNA immunoprecipitation (RIP), were employed to reveal the potential interacting protein of CCAT1 and elucidate the regulatory mechanism of CCAT1 in GC glycolysis. Moreover, the nude mice xenograft assay was used to evaluate the effect of CCAT1 on GC cells in vivo. RESULTS: In this study, we identified that CCAT1 expression was significantly elevated in the tissues and plasma exosomes of GC patients, as well as GC cell lines. Functional experiments showed that the knockdown of CCAT1 resulted in a substantial decrease in the proliferation, migration and invasion of GC cells both in vitro and in vivo through decreasing the expression of glycolytic enzymes and glycolytic rate. Conversely, overexpression of CCAT1 exhibited contrasting effects. Mechanistically, CCAT1 interacted with PTBP1 and effectively maintained its stability by inhibiting the ubiquitin-mediated degradation process. As a critical splicing factor, PTBP1 facilitated the transition from PKM1 to PKM2, thereby augmenting the glycolytic activity of GC cells and ultimately fostering the progression of GC. CONCLUSIONS: Our findings demonstrate that CCAT1 plays a significant role in promoting the proliferation, migration, and invasion of GC cells through the PTBP1/PKM2/glycolysis pathway, thus suggesting CCAT1's potential as a biomarker and therapeutic target for GC.


Asunto(s)
ARN Largo no Codificante , Neoplasias Gástricas , Animales , Ratones , Humanos , Neoplasias Gástricas/genética , ARN Largo no Codificante/genética , Ratones Desnudos , Carcinogénesis , Glucólisis , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteína de Unión al Tracto de Polipirimidina/genética
2.
Carcinogenesis ; 44(7): 596-609, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37402652

RESUMEN

Circular RNAs (circRNAs) have attracted increasing attention in cancer research. However, there are few studies about the high-throughput sequencing for clinical cohorts focussing on the expression characteristics and regulatory networks of circRNAs in oesophageal squamous cell carcinoma (ESCC) until now. Present study aim to comprehensively recognize the functional and mechanistic patterns of circRNA through constructing a circRNA-related competing endogenous RNA (ceRNA) network in ESCC. Summarily, RNA high-throughput sequencing was adopted to assess the circRNA, miRNA and mRNA expression profiles in ESCC. Through bioinformatics methods, a circRNA-miRNA-mRNA coexpression network was constructed and hub genes was identified. Finally, cellular function experiments combined with bioinformatics analysis were conducted to verify the identified circRNA was involved in the progression of ESCC through ceRNA mechanism. In this study, we established a ceRNA regulatory network, including 5 circRNAs, 7 miRNAs and 197 target mRNAs, and 20 hub genes were screened and identified to exert important roles in the progression of ESCC. As a verification, hsa_circ_0002470 (circIFI6) was revealed to be highly expressed in ESCC and regulate the expression of hub genes by absorbing miR-497-5p and miR-195-5p through ceRNA mechanism. Our results further indicated that silencing of circIFI6 repressed proliferation and migration of ESCC cells, highlighting the tumour promotion effects of circIFI6 in ESCC. Collectively, our study contributes a new insight into the progression of ESCC from the perspective of the circRNA-miRNA-mRNA network, shedding light on the circRNA research in ESCC.

3.
Int Immunopharmacol ; 119: 110213, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37137266

RESUMEN

P-Hydroxylcinnamaldehyde (CMSP) was firstly isolated from Chinese medicine Cochinchinnamomordica seed (CMS) by our team and has been verified to have growth-inhibiting abilities in malignant tumors including esophageal squamous cell carcinoma (ESCC). However, the detailed mechanism of its function is still unclear. Tumor-associated macrophages (TAMs) are an essential component of the tumor microenvironment (TME), playing important roles in tumor growth, metastasis, angiogenesis, and epithelial-mesenchymal transition (EMT). In the present study, we found that the percentage of M1-like macrophages was significantly increased in TME of ESCC cell derivedxenograft tumor model after CMSP treatment, while the ratios of other immune cells showed relatively low variation. To confirm these results, we further examined the effect of CMSP on macrophage polarization in vitro. The results revealed that CMSP also could induce phorbol-12-myristate-13-acetate (PMA)-induced M0 macrophages from THP-1 and mouse peritoneal macrophages toward the M1-like macrophages. Furthermore, CMSP could exert anti-tumor effect through TAMs in vitro co-culture model, in addition, the growth inhibition effect of CMSP was partly abolished in macrophage depletion model. To determine the potential pathway of CMSP induced polarization, we used quantitative proteomics (label-free) technology to explore the proteomic changes under CMSP treatment. The results revealed that immune-activating protein and M1 macrophage biomarkers were significantly increased after CMSP treatment. More importantly, CMSP stimulated pathways related to M1 macrophage polarization, such as the NF-κB signaling pathway and Toll-like receptor pathway, indicating that CMSP might induce M1-type macrophage polarization through these pathways. In conclusion, CMSP can regulate immune microenvironment in vivo and induce TAM polarization toward the M1 type by promoting proteomic changes, and exert anti-tumor effect through TAMs.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Animales , Ratones , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Proteoma , Neoplasias Esofágicas/tratamiento farmacológico , Macrófagos Asociados a Tumores/metabolismo , Proteómica , Microambiente Tumoral , Línea Celular Tumoral
4.
J Immunother Cancer ; 11(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37217247

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and exert an important role in tumor progression. Due to the heterogeneity and plasticity of TAMs, modulating the polarization states of TAMs is considered as a potential therapeutic strategy for tumors. Long noncoding RNAs (lncRNAs) have been implicated in various physiological and pathological processes, yet the underlying mechanism on how lncRNAs manipulate the polarization states of TAMs is still unclear and remains to be further investigated. METHODS: Microarray analyses were employed to characterize the lncRNA profile involved in THP-1-induced M0, M1 and M2-like macrophage. Among those differentially expressed lncRNAs, NR_109 was further studied, for its function in M2-like macrophage polarization and the effects of the condition medium or macrophages mediated by NR_109 on tumor proliferation, metastasis and TME remodeling both in vitro and in vivo. Moreover, we revealed how NR_109 interacted with far upstream element-binding protein 1 (FUBP1) to regulate the protein stability through hindering ubiquitination modification by competitively binding with JVT-1. Finally, we examined sections of tumor patients to probe the correlation among the expression of NR_109 and related proteins, showing the clinical significance of NR_109. RESULTS: We found that lncRNA NR_109 was highly expressed in M2-like macrophages. Knockdown NR_109 impeded IL-4 induced M2-like macrophage polarization and significantly reduced the activity of M2-like macrophages to support the proliferation and metastasis of tumor cells in vitro and in vivo. Mechanistically, NR_109 competed with JVT-1 to bind FUBP1 at its C-terminus domain, impeded the ubiquitin-mediated degradation of FUBP1, activated c-Myc transcription and thus promoted M2-like macrophages polarization. Meanwhile, as a transcription factor, c-Myc could bind to the promoter of NR_109 and enhance the transcription of NR_109. Clinically, high NR_109 expression was found in CD163+ TAMs from tumor tissues and was positively correlated with poor clinical stages of patients with gastric cancer and breast cancer. CONCLUSIONS: Our work revealed for the first time that NR_109 exerted a crucial role in regulating the phenotype-remodeling and function of M2-like macrophages via a NR_109/FUBP1/c-Myc positive feedback loop. Thus, NR_109 has great translational potentials in the diagnosis, prognosis and immunotherapy of cancer.


Asunto(s)
Neoplasias , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Microambiente Tumoral , Línea Celular Tumoral , Macrófagos/metabolismo , Regulación de la Expresión Génica , Neoplasias/patología
5.
J Oncol ; 2023: 3335959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36711024

RESUMEN

Long noncoding RNAs (lncRNAs) are gradually being annotated as important regulators of multiple cellular processes. The goal of our study was to investigate the effects of the lncRNA small nucleolar RNA host gene 5 (SNHG5) in lung adenocarcinoma (LAD) and its underlying mechanisms. The findings revealed a substantial drop in SNHG5 expression in LAD tissues, which correlated with clinical-pathological parameters. Transcriptome sequencing analysis demonstrated that the inhibitory effect of SNHG5 was associated with cell adhesion molecules. Moreover, the expression of SNHG5 was shown to be correlated with epithelial-mesenchymal transition (EMT) markers in western blots and immunofluorescence. SNHG5 also had significant effects of antimigration and anti-invasion on LAD cells in vitro. Furthermore, the migration and invasion of A549 cells were suppressed by overexpressed SNHG5 in the EMT progress induced by transforming growth factor ß1 (TGF-ß1), and this might be due to the inhibition of the expression of EMT-associated transcription factors involving Snail, SLUG, and ZEB1. In LAD tissues, the expression of SNHG5 exhibited a positive association with E-cadherin protein expression but a negative correlation with N-cadherin and vimentin, according to the results of quantitative real-time PCR (qRT-PCR). In summary, the current work demonstrated that the lncRNA SNHG5 might limit cell migration and invasion of LAD cancer via decreasing the EMT process, indicating that SNHG5 might be used as a target for LAD therapeutic methods.

6.
Biomed Res Int ; 2022: 5328192, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937390

RESUMEN

Objective: Endothelial cell-specific molecule 1 (ESM1) has been implicated as an oncogene in several types of cancer. However, the potential role of ESM1 in esophageal carcinogenesis (ESCA)/esophageal squamous cell carcinoma (ESCC) is still unclear. Methods: The expression, function, and survival data of ESM1 were observed using a bioinformatics approach. Subsequently, the expression level of ESM1 in surgical esophageal tumors and adjacent normal tissues was detected by qRT-PCR and immunofluorescence. We further revealed protein expression by immunohistochemistry (IHC), which is related to the prognosis of patients with ESCC using survival analysis. In vitro, knockdown of ESM1 in KYSE150 and KYSE510 cell lines, colony formation assays, wound healing assays, and Transwell assays were performed. Results: ESM1 is significantly elevated in 12 of 20 types of human cancer. ESM1 is highly expressed in tumor tissue compared with adjacent normal tissue and was identified as a hub gene in ESCA. Clinical outcome endpoints of overall survival (OS), progression-free interval (PFI), and disease-specific survival (DSS) curves showed that patients whose ESM1 expression was high had a lower clinical survival rate. The ESM1 high-expression group has a certain correlation with clinical stage and grade. The IHC of ESM1 further demonstrated that the higher the expression was, the worse the N classification and pTNM stage in patients with ESCC, which had a distinctly poorer overall 5-year survival rate. Univariate analysis showed that age, N classification, pTNM stage, and ESM1 expression were all prognostic factors, although multivariate Cox regression analysis showed that only pTNM stage was an independent prognostic factor. In vitro, silencing ESM1 suppressed the proliferation, migration, and invasion of KYSE150 and KYSE510 cells. Conclusions: ESM1 is a hub gene in the initiation and progression of ESCA/ESCC that promotes the proliferation, migration, and invasion of esophageal cancer cells and may be a promising therapeutic target and prognostic indicator.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Humanos , Proteínas de Neoplasias/genética , Pronóstico , Proteoglicanos
7.
PeerJ ; 10: e13901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990908

RESUMEN

Gastric cancer is one of the most common malignancies worldwide and has been identified as the third leading cause of cancer-related mortality. Flotillin-1 is a lipid raft-associated scaffolding protein and plays an important role in the progression and development of several malignant carcinomas. Flotillin-1 is involved in epithelial-mesenchymal transition (EMT) process of several solid tumors to promote metastasis. However, the detailed characteristics and mechanisms of Flotillin-1 in gastric cancer have rarely been investigated. In this study, we found Flotillin-1 upregulated in gastric cancer, and the high expression of Flotillin-1 correlated with a worse prognosis. The migration and invasion ability of gastric cancer cells was upregulated by overexpressing Flotillin-1. Knockdown of Flotillin-1 inhibits gastric cancer cells metastasis. Flotillin-1 is a key regulator of EMT process and promotes gastric cancer cells metastasis through inducing EMT. Flotillin-1 may interact with a deubiquitinase to inhibit the ubiquitination of Snail in gastric cancer cells to promote EMT process. Our study provides a rationale and potential target for the treatment of gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Transición Epitelial-Mesenquimal/genética , Transducción de Señal , Línea Celular Tumoral
8.
ACS Omega ; 7(1): 240-258, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35036696

RESUMEN

Helicobacter pylori (H. pylori) is known to be a major pathogen causing gastric diseases through its direct localization in gastric epithelium cells. H. pylori releases outer membrane vesicles (OMVs) throughout the growth process. The content, function, and mechanism of H. pylori OMVs in gastric epithelial cells remain unclear. In this study, we extracted and characterized H. pylori OMVs of two strains (standard strain NCTC11637 and clinical strain Hp-400) and analyzed the specific content by proteomic technology. We identified more than 400 proteins in H. pylori OMVs. In addition, we investigated the impact of H. pylori OMVs on cellular functions by detecting proteomic changes in GES1 cells. GES1 cells cocultured with increasing concentrations of H. pylori OMVs were subjected to quantitative proteomic analyses using label-free methods for relative quantitation. The results showed that a total of 4261 proteins were verified, 153 of which were significantly altered in abundance when cocultured with NCTC11637 OMVs, and a total of 4234 proteins in Hp-400 OMVs, 390 of which were significantly altered. Gene ontology analysis and Kyoto encyclopedia of genes and genomes pathway mapping identified significantly altered inflammatory and cancer signaling pathways, including metabolic pathways and the PI3K-Akt signaling pathway. Furthermore, we explored the proteomic changes in GES1 cells induced by H. pylori. Bioinformatics analysis showed that changes in multiple pathways coincided with OMV-mediated proteomic changes. Based on these results, H. pylori induced pathogenicity in epithelial cells at least partially by secreting OMVs that mediated dramatic and specific proteomic changes in host cells. Data are available via ProteomeXchange with identifiers PXD025216, PXD025259, and PXD025281.

9.
Front Oncol ; 11: 721604, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900675

RESUMEN

Gastric cancer (GC) is one of the deadliest cancers, and long noncoding RNAs (lncRNAs) have been reported to be the important regulators during the occurrence and development of GC. The present study identified a novel and functional lncRNA in GC, named NR038975, which was confirmed to be markedly upregulated in the Gene Expression Profiling Interactive Analysis (GEPIA) dataset and our independent cohort of GC tissues. We firstly characterized the full-length sequence and subcellular location of NR038975 in GC cells. Our data demonstrated that upregulated NR038975 expression was significantly related to lymph node metastasis and TNM stage. In addition, knockdown of NR038975 inhibited GC cell proliferation, migration, invasion, and clonogenicity and vice versa. Mechanistically, RNA pull-down and mass spectrometry assays identified the NR038975-binding proteins and NF90/NF45 complex, and the binding was also confirmed by RNA immunoprecipitation and confocal experiments. We further demonstrated that genetic deficiency of NR038975 abrogated the interaction between NF45 and NF90. Moreover, NF90 increased the stability of NR038975. Thus, NR038975-NF90/NF45 will be an important combinational target of GC. Finally, we detected NR038975 in serum exosomes and serum of GC patients. Our results indicated that NR038975 was a biomarker for gastric tumorigenesis. The current study demonstrated that NR038975 is a novel lncRNA that is clinically and functionally engaged in GC progression and might be a novel diagnostic marker and potential therapeutic target.

10.
Front Oncol ; 11: 753598, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900704

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers worldwide, and approximately one-third of CRC patients present with metastatic disease. Periplocymarin (PPM), a cardiac glycoside isolated from Periploca sepium, is a latent anticancer compound. The purpose of this study was to explore the effect of PPM on CRC cells. CRC cells were treated with PPM and cell viability was evaluated by CCK-8 assay. Flow cytometry and TUNEL staining were performed to assess cell cycle and apoptosis. Quantitative proteomics has been used to check the proteins differentially expressed by using tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry. Bioinformatic analysis was undertaken to identify the biological processes that these differentially expressed proteins are involved in. Gene expression was analyzed by western blotting. The effect of PPM in vivo was primarily checked in a subcutaneous xenograft mouse model of CRC, and the gene expression of tumor was checked by histochemistry staining. PPM could inhibit the proliferation of CRC cells in a dose-dependent manner, induce cell apoptosis and promote G0/G1 cell cycle arrest. A total of 539 proteins were identified differentially expressed following PPM treatment, where among those there were 286 genes upregulated and 293 downregulated. PPM treatment caused a pro-apoptosis gene expression profile both in vivo and in vitro, and impaired PI3K/AKT signaling pathway might be involved. In addition, PPM treatment caused less detrimental effects on blood cell, hepatic and renal function in mice, and the anti-cancer effect was found exaggerated by PPM+5-FU combination treatment. PPM may perform anti-CRC effects by promoting cell apoptosis and this might be achieved by targeting PI3K/AKT pathway. PPM might be a safe and promising anti-cancer drug that needs to be further studied.

11.
Genomics ; 113(5): 3015-3029, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34182081

RESUMEN

Small nucleolar RNAs (snoRNAs) are an important group of non-coding RNAs that have been reported to play a key role in the occurrence and development of various cancers. Here we demonstrate that Small nucleolar RNA 42 (SNORA42) enhanced the proliferation and migration of Oesophageal squamous carcinoma cells (ESCC) via the DHX9/p65 axis. Our results found that SNORA42 was significantly upregulated in ESCC cell lines, tissues and serum of ESCC patients. The high expression level of SNORA42 was positively correlated with malignant characteristics and over survival probability of patients with ESCC. Through in vitro and in vivo approaches, we demonstrated that knockdown of SNORA42 significantly impeded ESCC growth and metastasis whereas overexpression of SNORA42 got opposite effects. Mechanically, SNORA42 promoted DHX9 expression by attenuating DHX9 transports into the cytoplasm, to protect DHX9 from being ubiquitinated and degraded. From the KEGG analysis of Next-Generation Sequencing, the NF-κB pathway was one of the most regulated pathways by SNORA42. SNORA42 enhanced phosphorylation of p65 and this effect could be reversed by NF-κB inhibitor, BAY11-7082. Moreover, SNORA42 activated NF-κB signaling through promoting the transcriptional co-activator DHX9 interacted with p-p65, inducing NF-κB downstream gene expression. In summary, our study highlights the potential of SNORA42 is up-regulated in ESCC and promotes ESCC development partly via interacting with DHX9 and triggering the DHX9/p65 axis.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/farmacología , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , Humanos , FN-kappa B/genética , Proteínas de Neoplasias/metabolismo , ARN Nucleolar Pequeño , Transducción de Señal , Factor de Transcripción ReIA
12.
Drug Des Devel Ther ; 15: 1333-1344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33814899

RESUMEN

PURPOSE: Lymphoma is considered to be one of the most pressing health problems worldwide owing to its high incidence and mortality. Previous studies have shown that periplocin, a naturally occurring compound, inhibits growth and induces apoptosis in several cancers. However, the effects of periplocin on lymphoma and the underlying mechanisms of action remain unclear. METHODS: The PharmMapper database was used to predict the potential targets of periplocin. The GeneCard database was used to identify lymphoma-related genes. A few intersecting genes were obtained, and the protein-protein interaction network was visualized using STRING Gene ontology analysis. Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed using R project. MTS assay, flow cytometry, real-time quantitative polymerase chain reaction (qPCR), and Western blotting were used to verify whether periplocin possesses anti-lymphoma activity. RESULTS: A total of 216 intersecting genes were identified. Numerous cancer-related signaling pathways were visualized using Cytoscape software, with the PI3K-Akt signaling pathway being the highest-ranked pathway related to cell proliferation, apoptosis, and cell cycle progression. HuT 78 and Jurkat cell lines were used to verify the predictions. Periplocin significantly inhibited their proliferation in a dose- and time-dependent manner, but had no effect on the viability of peripheral blood lymphocytes. Flow cytometry revealed that treatment with periplocin increased the apoptotic rate and ratio of HuT 78 and Jurkat cells in the G2/M phase. CDK1 and cyclin B1 complex formation is a key gatekeeper to mitotic division in the G2/M phase. Western blot analysis revealed that periplocin significantly decreased the protein levels of CDK1 and cyclin B1; however, real-time qPCR revealed no effect on gene expression. CONCLUSION: Periplocin showed anti-tumor effects in lymphoma cells through multiple targets and signaling pathways, and could be a novel therapeutic agent for the treatment of lymphoma.


Asunto(s)
Antineoplásicos/farmacología , Linfoma/tratamiento farmacológico , Saponinas/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Linfoma/metabolismo , Linfoma/patología , Saponinas/química , Células Tumorales Cultivadas
13.
Carcinogenesis ; 42(2): 315-326, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33095847

RESUMEN

A substantial fraction of transcripts are known as long noncoding RNAs (lncRNAs), and these transcripts play pivotal roles in the development of cancer. However, little information has been published regarding the functions of lncRNAs in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. In our previous studies, we demonstrated that small nucleolar RNA host gene 5 (SNHG5), a known lncRNA, is dysregulated in gastric cancer (GC). In this study, we explored the expression and function of SNHG5 in development of ESCC. SNHG5 was found to be downregulated in human ESCC tissues and cell lines, and this downregulation was associated with cancer progression, clinical outcomes and survival rates of ESCC patients. Furthermore, we also found that overexpression of SNHG5 significantly inhibited the proliferation, migration and invasion of ESCC cells in vivo and in vitro. Notably, we found that metastasis-associated protein 2 (MTA2) was pulled down by SNHG5 in ESCC cells using RNA pulldown assay. We also found that SNHG5 reversed the epithelial-mesenchymal transition by interacting with MTA2. In addition, overexpression of SNHG5 downregulated the transcription of MTA2 and caused its ubiquitin-mediated degradation. Thus, overexpression of MTA2 partially abrogated the effect of SNHG5 in ESCC cell lines. Furthermore, we found that MTA2 mRNA expression was significantly elevated in ESCC specimens, and a negative correlation between SNHG5 and MTA2 expression was detected. Overall, this study demonstrated, for the first time, that SNHG5-regulated MTA2 functions as an important player in the progression of ESCC and provide a new potential therapeutic strategy for ESCC.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Histona Desacetilasas/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Conjuntos de Datos como Asunto , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/cirugía , Carcinoma de Células Escamosas de Esófago/mortalidad , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/cirugía , Esofagectomía , Esófago/patología , Esófago/cirugía , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Invasividad Neoplásica/genética , Proteolisis , RNA-Seq , Ubiquitina/metabolismo , Ubiquitinación/genética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Cancer Sci ; 112(3): 1060-1074, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33340431

RESUMEN

Metastasis-associated protein 2 (MTA2) is frequently amplified in many types of cancers; however, the role and underlying molecular mechanism of MTA2 in esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we reported that MTA2 is highly expressed in ESCC tissue and cells, and is closely related to the malignant characteristics and poor prognosis of patients with ESCC. Through in vitro and in vivo experiments, we demonstrated that MTA2 significantly promoted ESCC growth, metastasis, and epithelial-mesenchymal transition (EMT) progression. This integrative analysis combined with expression microarray showed that MTA2 could interact with eukaryotic initiation factor 4E (EIF4E), which positively regulates the expression of Twist, known as a master regulator of EMT. Moreover, the results of chromatin immunoprecipitation revealed that MTA2 was recruited to the E-cadherin promoter by Twist, which reduced the acetylation level of the promoter region and thus inhibited expression of E-cadherin, and subsequently promoted the aggressive progression of ESCC. Collectively, our study provided novel evidence that MTA2 plays an aggressive role in ESCC metastasis by a novel EIF4E-Twist positive feedback loop, which may provide a potential therapeutic target for the management of ESCC.


Asunto(s)
Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Histona Desacetilasas/metabolismo , Proteínas Nucleares/genética , Proteínas Represoras/metabolismo , Proteína 1 Relacionada con Twist/genética , Animales , Antígenos CD/genética , Cadherinas/genética , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/cirugía , Carcinoma de Células Escamosas de Esófago/mortalidad , Carcinoma de Células Escamosas de Esófago/secundario , Carcinoma de Células Escamosas de Esófago/cirugía , Esofagectomía , Esófago/patología , Esófago/cirugía , Factor 4E Eucariótico de Iniciación/genética , Retroalimentación Fisiológica , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Histona Desacetilasas/genética , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Proteínas Nucleares/metabolismo , Pronóstico , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteína 1 Relacionada con Twist/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Environ Mol Mutagen ; 61(2): 256-265, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31661565

RESUMEN

The long noncoding RNA CARLo-5 is dysregulated in multiple types of human cancers. High CARLo-5 is a promising predictive factor for various cancers, including endometrial carcinoma (EC). Our previous study showed that the expression level of CARLo-5 was associated with advanced FIGO stage (The International Federation of Gynecology and Obstetrics), lymph node metastasis, and the poor survival of patients with EC. In the present study, we demonstrated that the downregulation of CARLo-5 could affect the proliferation, cell cycle, migration, and invasion of EC cell lines HEC-1B and KLE cells. The oncogenic activity of CARLo-5 was also confirmed with in vivo data. Mechanistically, CARLo-5 could affect the expression of CDK/CDKN1A and MMP2/9, which have been reported to be regulated by CARLo-5 and associated with cell cycle and motility. In conclusion, this study is the first to discover the biological function and mechanism of CARLo-5 in regulating the biological characteristics of EC cells. Targeting CARLo-5 and its pathway might provide new biomarkers or potential therapies target for patients with EC. Environ. Mol. Mutagen. 61:256-265, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Carcinogénesis/genética , Neoplasias Endometriales/genética , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Femenino , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica/genética
16.
Biomed Pharmacother ; 121: 109611, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31731196

RESUMEN

BACKGROUND: Our previous studies have showed that p-Hydroxylcinnamaldehyde (CMSP) could induce the differentiation of ESCC cells via the cAMP-RhoA-MAPK signalling pathway, which suggests a new potential strategy for ESCC treatment. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in several tumour cells by binding to the death receptors DR4 and DR5. However, TRAIL has little effect on oesophageal squamous cell carcinoma (ESCC) cells due to the loss of the receptors. The present study determined the effect of CMSP, the firstly found chemical constituent of Cochinchinamomordica seed (CMS), on TRAIL-induced apoptosis and its mechanism in ESCC cells. METHODS: MTS assays were performed to examine the CMSP- and TRAIL-mediated inhibition of ESCC cell growth. Flow cytometry and Hoechst 33258 staining assays were used to detect apoptosis in ESCC cells treated with CMSP combined with TRAIL. Western blotting was used to determine the effect of CMSP on the expression of p38, p-p38, DR4, DR5, Bid and caspase-3/8 in ESCC cells treated with CMSP combined with TRAIL. Additionally, immunodeficient Balb-c/null mouse model was used to determine the chemotherapeutic efficacy of CMSP and TRAIL against ESCC tumour xenograft growth in vivo. RESULTS: We found that the combination of CMSP and TRAIL had a greater inhibitory effect on ESCC cell viability in vitro than CMSP or TRAIL alone. CMSP enhanced the TRAIL-induced apoptosis in ESCC cells by upregulating the expression of DR4 and DR5 via the p38 MAPK signalling pathway. Furthermore, the increased expression of DR4 and DR5 upon TRAIL-induced apoptosis in ESCC cells was mediated at least in part by subsequent caspase-3 and caspase-8 activation. Moreover, the in vivo model showed that tumour growth was significantly slower in CMSP and TRAIL combination-treated mice than in mice treated with CMSP or TRAIL alone. CONCLUSION: Taken together, our findings indicate that CMSP as an extract from TCM, might be as a potential sensitizer of TRAIL and thus provide a novel strategy for the clinical treatment of ESCC.


Asunto(s)
Cinamatos/farmacología , Neoplasias Esofágicas/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Momordica/química , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos BALB C , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/análisis , Semillas/química
17.
J Exp Clin Cancer Res ; 38(1): 501, 2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31864387

RESUMEN

BACKGROUND: Esophageal cancer is one of the most common malignant tumors in the world. With currently available therapies, only 20% ~ 30% patients can survive this disease for more than 5 years. TRAIL, a natural ligand for death receptors that can induce the apoptosis of cancer cells, has been explored as a therapeutic agent for cancers, but it has been reported that many cancer cells are resistant to TRAIL, limiting the potential clinical use of TRAIL as a cancer therapy. Meanwhile, Periplocin (CPP), a natural compound from dry root of Periploca sepium Bge, has been studied for its anti-cancer activity in a variety of cancers. It is not clear whether CPP and TRAIL can have activity on esophageal squamous cell carcinoma (ESCC) cells, or whether the combination of these two agents can have synergistic activity. METHODS: We used MTS assay, flow cytometry and TUNEL assay to detect the effects of CPP alone or in combination with TRAIL on ESCC cells. The mechanism of CPP enhances the activity of TRAIL was analyzed by western blot, dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assay. The anti-tumor effects and the potential toxic side effects of CPP alone or in combination with TRAIL were also evaluated in vivo. RESULTS: In our studies, we found that CPP alone or in combination with TRAIL could inhibit the proliferation of ESCC cells and induce apoptosis, and we certificated that combination of two agents exert synergized functions. For the first time, we identified FoxP3 as a key transcriptional repressor for both DR4 and DR5. By down-regulating FoxP3, CPP increases the expression of DR4/DR5 and renders ESCC cells much more sensitive to TRAIL. We also showed that CPP reduced the expression of Survivin by inhibiting the activity of Wnt/ß-catenin pathway. All these contributed to synergistic activity of CPP and TRAIL on ESCC cells in vitro and in vivo. CONCLUSION: Our data suggest that CPP and TRAIL could be further explored as potential therapeutic approach for esophageal cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Saponinas/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Animales , Secuencia de Bases , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Carcinoma de Células Escamosas de Esófago , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Humanos , Masculino , Ratones , Regiones Promotoras Genéticas , Unión Proteica , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Vía de Señalización Wnt , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Oncol ; 2019: 7024675, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31885582

RESUMEN

Endometrial carcinoma (EC) is one of the most common malignancies of the female genital tract, although the mechanisms of EC initiation and development remain incompletely understood. In this study, we demonstrated that the noncoding RNA SNHG5 can inhibit the proliferation, migration, and invasion of EC cells by suppressing the expression of its putative target miR-25-3p. Overexpression of miR-25-3p significantly promoted the proliferation, migration, and invasion of EC cells. In addition, we showed that miR-25-3p represses the expression of BTG2 by directly binding to the 3'-UTR of BTG2 mRNA. Furthermore, increased miR-25-3p expression and decreased SNHG5 and BTG2 expression were observed in EC tissues, and the expression of SNHG5 was negatively correlated to that of miR-25-3p but positively correlated to that of BTG2. In summary, for the first time, we report that the SNHG5/miR-25-3p/BTG2 axis plays an important role in EC progression and is of great potential clinical significance for EC diagnosis and therapy.

19.
Mol Carcinog ; 58(6): 1033-1045, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30737960

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of the tumor necrosis factor family, induces apoptosis in a variety of cancer cells. However, gastric cancer (GC) cells are insensitive to TRAIL usually. In the previous study, we showed that Periplocin could induce apoptosis in GC cells via the activation of ERK1/2-EGR1 pathway. In the present study, we have shown that the combination of Periplocin and TRAIL had a greater inhibitory effect on gastric cancer cell viability in vitro and in vivo than Periplocin or TRAIL alone. Through upregulating the expression of DR4 and DR5 at transcriptional and protein levels, Periplocin enhanced the sensitivity of gastric cancer cells to TRAIL. Furthermore, enhanced activity of ERK1/2-EGR1 pathway was responsible for upregulating of DR4 and DR5 uponPeriplocin treatment, subsequently reducing the expression of Mcl-1 and Bcl2 and activating Bid and caspase-3/8. Collectively, these data implied that Periplocin might act as a sensitizer of TRAIL and could be a potential strategy for the treatment of GC.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Saponinas/administración & dosificación , Neoplasias Gástricas/tratamiento farmacológico , Ligando Inductor de Apoptosis Relacionado con TNF/administración & dosificación , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Saponinas/farmacología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Biosci Rep ; 39(1)2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30530570

RESUMEN

We aimed to confirm the role of miR-1296-5p in gastric cancer and to identify its target genes. The expression of miR-1296-5p was measured in gastric cancer tissues and cell lines. The function of miR-1296-5p was examined by the overexpression and inhibition of its expression in typical gastric cell lines as well as SGC-7901 and MGC-803 cells. The targets of miR-1296-5p were identified by a luciferase activity assay. We found that miR-1296-5p was down-regulated in gastric cancer tissue and cell lines, and low expression levels of miR-1296-5p were associated with advanced clinical stage. Moreover, miR-1296-5p inhibited cell proliferation, migration, and invasion in SGC-7901 and MGC-803 cells. Then, we identified CDK6 and EGFR as novel targets of miR-1296-5p by a luciferase activity assay. Furthermore, the overexpression of miR-1296-5p suppressed the expression of CDK6 and EGFR. Our results indicated a tumor-suppressive role of miR-1296-5p through the translational repression of oncogenic CDK6 and EGFR in gastric cancer.


Asunto(s)
Quinasa 6 Dependiente de la Ciclina/genética , Genes Supresores de Tumor/fisiología , MicroARNs/genética , Neoplasias Gástricas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Receptores ErbB/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...