Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(11): 14308-14320, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38456610

RESUMEN

It is well known that low-silica SAPO-34, with an extra porosity (meso- and/or macropores) system, affords excellent catalytic performance in the methanol-to-olefins (MTO) reaction, while the direct synthesis of low-silica SAPO-34 with a hierarchical structure is difficult to achieve, principally because the crystal impurities are usually formed under a low silica content in a gel precursor. Herein, low-silica SAPO-34 nanocrystals were successfully fabricated for the first time by constructing an isomorphous core-shell structure in an epitaxial growth manner. In which, low-silica, ultrasmall nanosquare-shaped SAPO-34 crystals with the same growth orientation along the (100) crystal plane compactly grow on the monocrystal SAPO-34 cores. Crucially, the external surface acid properties of the core SAPO-34 with the Si-rich outer layer are effectively modified by the low-silica SAPO-34 shell. Furthermore, the growth process and Si-substitution mechanism of the shell zeolite were comprehensively investigated. It was found that with the prolonged crystallization time, more and more coordinated Si(4Al) and Si(3Al) structures via two substitution mechanisms (SM2 and SM3) are generated in the nanocrystalline SAPO-34 shell, which endow moderate acidity of the core-shell SAPO-34. Compared to the uncoated SAPO-34, the core-shell SAPO-34 performs a longer lifespan and a higher average selectivity of light olefins (ethylene plus propylene) when applied to the MTO reaction, which is attributed to the positive effects of the luxuriant interstitial pores offering a fast diffusion channel and the moderate acid density depressing the hydrogen transfer reaction of light olefins. This work provides new insights into the fabrication of low-silica SAPO-34 nanocrystals, which are based on the rational design of the isomorphous core-shell zeolite.

2.
ACS Appl Mater Interfaces ; 14(9): 11415-11424, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35226463

RESUMEN

Zeolites with good acid site accessibility and high diffusion rates are highly desirable catalysts, especially when dealing with bulk molecules. In this work, ZSM-5 zeolites with similar Si/Al ratios but different thicknesses along the b-axis (from ∼30 nm to ∼5 µm), namely, two plate-like ZSM-5 zeolites and two reference zeolites have been prepared and the impacts of b-axis thickness on the surface properties and catalytic cracking performances are explored. Comprehensive physiochemical studies demonstrate that reducing the b-axis thickness of the zeolite crystals endows the samples with better acid site accessibility and more external surface acid sites. Two model compounds with different molecule sizes, namely, 1,3,5-triisopropylbenzene (TIPB) and cumene, are selected to explore the catalytic cracking performances of the as-synthesized samples. The results reveal that decreasing the b-axis thickness of zeolite crystals can effectually promote the catalytic activity and stability in catalytic cracking reactions. For TIPB cracking, the greatly enhanced catalytic activity is ascribed to the enhanced acid site accessibility in plate-like ZSM-5 zeolites, and for cumene cracking, the improved catalytic stability is ascribed to the shortened diffusion length of plate-like zeolites.

3.
J Am Chem Soc ; 143(4): 1993-2004, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33464884

RESUMEN

Zeolite crystals offering a short diffusion pathway through the pore network are highly desired for a number of catalytic and molecule separation applications. Herein, we develop a simple synthetic strategy toward reducing the thickness along the b-axis of MFI-type crystals, thus providing a short diffusion path along the straight channel. Our approach combines preliminary aging and a fluoride-assisted low-temperature crystallization. The synthesized MFI crystals are in the micrometer-size range along the a- and c-axis, while the thickness along the b-axis is a few tens of nanometers. The synthesis parameters controlling the formation of platelike zeolite are studied, and the factors controlling the zeolite growth are identified. The synthesis strategy works equally well with all-silica MFI (silicalite-1) and its Al- and Ga-containing derivatives. The catalytic activity of platelike ZSM-5 in the methanol-to-hydrocarbons (MTH) reaction is compared with a commercial nanosized ZSM-5 sample, as the platelike ZSM-5 exhibits a substantially extended lifetime. The synthesis of platelike MFI crystals is successfully scaled up to a kilogram scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...