Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(33): 22465-22473, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39106491

RESUMEN

Persistent luminescence describes the phenomenon whereby luminescence remains after the stoppage of excitation. Recently, upconversion persistent luminescence (UCPL) phosphors that can be directly charged by near-infrared (NIR) light have gained considerable attention due to their promising applications ranging from photonics to biomedicine. However, current lanthanide-based UCPL phosphors show small absorption cross sections and low upconversion charging efficiency. The development of UCPL phosphors faces challenges due to the lack of flexible upconversion charging pathways and poor design flexibility. Herein, we discovered a lattice defect-mediated broadband photon upconversion process and the accompanying NIR-to-NIR UCPL in Cr-doped zinc gallate nanoparticles. The zinc gallate nanoparticles can be directly activated by broadband NIR light in the 700-1000 nm range to produce persistent luminescence at about 700 nm, which is also readily enhanced by rationally tailoring the lattice defects in the phosphors. This proposed UCPL phosphor achieved a signal-to-background ratio of over 200 in bioimaging by efficiently avoiding interference from autofluorescence and light scattering. Our work reported a lattice defect-mediated photon upconversion phenomenon, which significantly expands the horizons for the flexible design of UCPL phosphors toward broad applications ranging from bioimaging to photocatalysis.

2.
BMC Public Health ; 24(1): 1998, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060945

RESUMEN

BACKGROUND: Obstructive sleep apnea (OSA) and osteoporosis (OP) are prevalent diseases in the elderly. This study aims to reveal the clinical association between OSA and OP and explore potential crosstalk gene targets. METHODS: Participants diagnosed with OSA in the National Health and Nutrition Examination Survey (NHANES) database (2015-2020) were included, and OP was diagnosed based on bone mineral density (BMD). We explored the association between OSA and OP, and utilized multivariate logistic regression analysis and machine learning algorithms to explore the risk factors for OP in OSA patients. Overlapping genes of comorbidity were explored using differential expression analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and Random Forest (RF) methods. RESULTS: In the OSA population, the weighted prevalence of OP was 7.0%. The OP group had more females, lower body mass index (BMI), and more low/middle-income individuals compared to the non-OP group. Female gender and lower BMI were identified as independent risk factors for OP in OSA patients. Gene expression profiling revealed 8 overlapping differentially expressed genes in OP and OSA patients. KCNJ1, NPR3 and WT1-AS were identified as shared diagnostic biomarkers or OSA and OP, all of which are associated with immune cell infiltration. CONCLUSION: This study pinpointed female gender and lower BMI as OP risk factors in OSA patients, and uncovered three pivotal genes linked to OSA and OP comorbidity, offering fresh perspectives and research targets.


Asunto(s)
Encuestas Nutricionales , Osteoporosis , Apnea Obstructiva del Sueño , Humanos , Osteoporosis/genética , Osteoporosis/epidemiología , Femenino , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/epidemiología , Masculino , Persona de Mediana Edad , Factores de Riesgo , Anciano , Transcriptoma , Adulto , Perfilación de la Expresión Génica
3.
Environ Sci Technol ; 58(27): 12091-12100, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38916160

RESUMEN

The widespread ozone (O3) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O2 is the most promising method to eliminate ambient O3, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein, we elaborately developed a splendidly active and stable Mn-based catalyst with double hydrophobic protection of active carbon (AC) and CeO2 (CeMn@AC), which possessed abundant interfacial oxygen vacancies and excellent desorption of peroxide intermediates (O22-). Under extremely humid (RH = 90%) conditions and a high space velocity of 1200 L h-1 g-1, the optimized CeMn@AC achieved nearly 100% O3 conversion (140 h) at 5 ppm, showing unprecedented catalytic activity and moisture resistance toward O3 decomposition. In situ DRIFTS and theory calculations confirmed that the exceptional moisture resistance of CeMn@AC was ascribed to the double protection effect of AC and CeO2, which cooperatively prevented the competitive adsorption of H2O molecules and their accumulation on the active sites of MnO2. AC provided a hydrophobic reaction environment, and CeO2 further alleviated moisture deterioration of the MnO2 particles exposed on the catalyst surface via the moisture-resistant oxygen vacancies of MnO2-CeO2 crystal boundaries. This work offers a simple and efficient strategy for designing moisture-resistant materials and facilitates the practical application of the O3 decomposition catalysts in various environments.


Asunto(s)
Ozono , Ozono/química , Catálisis , Carbono/química , Compuestos de Manganeso/química , Cerio/química , Óxidos/química
4.
Angew Chem Int Ed Engl ; 63(33): e202407315, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38818545

RESUMEN

Li metal is regarded as the "Holy Grail" in the next generation of anode materials due to its high theoretical capacity and low redox potential. However, sluggish Li ions interfacial transport kinetics and uncontrollable Li dendrites growth limit practical application of the energy storage system in high-power device. Herein, separators are modified by the addition of a coating, which spontaneously grafts onto the Li anode interface for in situ lithiation. The resultant alloy possessing of strong electron-donating property promotes the decomposition of lithium bistrifluoromethane sulfonimide in the electrolyte to form a LiF-rich alloy-doped solid electrolyte interface (SEI) layer. High ionic alloy solid solution diffusivity and electric field dispersion modulation accelerate Li ions transport and uniform stripping/plating, resulting in a high-power dendrite-free Li metal anode interface. Surprisingly, the formulated SEI layer achieves an ultra-long cycle life of over 8000 h (20,000 cycles) for symmetric cells at a current density of 10 mA cm-2. It also ensures that the NCM(811)//PP@Au//Li full cell at ultra-high currents (40 C) completes the charging/discharging process in only 68 s to provide high capacity of 151 mAh g-1. The results confirm that this scalable strategy has great development potential in realizing high power dendrite-free Li metal anode.

5.
Langmuir ; 40(17): 9028-9038, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38635954

RESUMEN

Aqueous zinc-ion batteries (AZIBs) suffer from sharp cycling deterioration due to serious interfacial side reactions and corrosion problems on the zinc anode. Herein, an efficacious approach to construct hydrophobic ZnMoO4 coatings on Zn (denoted as Zn@ZMO) is proposed to mitigate direct contact between the zinc anode and electrolyte and enhance its cycle life. The hydrophobic ZnMoO4 layer (contact angle = 128°) with a honeycomb-like structure is prepared by an in situ liquid phase deposition method. The as-prepared ZnMoO4 coating exhibits persistent corrosion protection for Zn through 30 days of immersion in a 2 M ZnSO4 electrolyte, indicating excellent stability of the ZnMoO4 layer and ensuring its available application in AZIBs. Unique microchannels in this kind of honeycomb-like structured coating favor Zn2+ ion diffusion and ease of ion transport, especially at high current cycling. Its robust surface exclusion can effectively counter other side reactions induced by water, simultaneously. As a result, the Zn@ZMO symmetrical cell shows a remarkable cycle lifespan exceeding 2700 h at 1 mA cm-2/1 mA h cm-2, surpassing that of the bare zinc cell by more than 100 folds. At a current density of 5 A g-1, the Zn@ZMO//V2O5 cell can still achieve a specific capacity of 167.0 mA h g-1 after 500 cycles with a capacity retention rate of 88%, which demonstrates its long-term cycling stability.

6.
Environ Sci Technol ; 58(9): 4404-4414, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38310571

RESUMEN

Photocatalytic oxidation has gained great interest in environmental remediation, but it is still limited by its low efficiency and catalytic deactivation in the degradation of aromatic VOCs. In this study, we concurrently regulated the surface hydroxyl and oxygen vacancies by introducing Al into ZnSn layered double hydroxide (LDH). The presence of distorted Al species induced local charge redistribution, leading to the remarkable formation of oxygen vacancies. These oxygen vacancies subsequently increased the amount of surface hydroxyl and elongated its bond length. The synergistic effects of surface hydroxyl and oxygen vacancies greatly enhanced reactant adsorption-activation and facilitated charge transfer to generate •OH, •O2-, and 1O2, resulting in highly efficient oxidation and ring-opening of various aromatic VOCs. Compared with commercial TiO2, the optimized ZnSnAl-50 catalyst exhibited about 2-fold activity for the toluene and styrene degradation and 10-fold activity for the chlorobenzene degradation. Moreover, ZnSnAl-50 demonstrated exceptional stability in the photocatalytic oxidation of toluene under a wide humidity range of 0-75%. This work marvelously improves the photocatalytic efficiency, stability, and adaptability through a novel strategy of surface hydroxyl and oxygen vacancies engineering.


Asunto(s)
Radical Hidroxilo , Oxígeno , Adsorción , Oxidación-Reducción , Tolueno
7.
J Biomater Sci Polym Ed ; 35(8): 1197-1213, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38421916

RESUMEN

Rapamycin (RAP) is currently being developed as potential antibreast cancer drug. However, its poor solubility completely limits its use. The aim of this study was to develop polyethylene glycol-poly(lactide-co-glycolide) (PEG-PLGA)-based nanoparticles (NPs) to load RAP via microfluidics with an appropriate polyethylene glycol (PEG) content to enhance the bioavailability of RAP. Polydimethylsiloxane (PDMS) chips with a Y-shaped channel were designed to obtain RAP-loaded PEG-PLGA NPs (RAP-PEG-PLGA). The entrapment efficiency (EE) and drug loading (DL) as well as release profile of RAP-PEG-PLGA were evaluated, and their resistance to plasma albumin adsorption of NPs with different PEG contents was evaluated and compared. RAW264.7 and 4T1 cells were used to assess the antiphagocytic and anticancer cells effect of NPs, respectively. RAP-PEG-PLGA of around 124 nm in size were successfully prepared with the EE of 82.0% and DL of 12.3%, and sustained release for around 40 d. A PEG relative content of 10% within the PEG-PLGA molecule was shown superior in resisting protein adsorption. RAP-PEG-PLGA inhibited the growth of breast cancer cells when the concentration was over 10 µg/mL, and the inhibition efficiency was significantly higher than free RAP. Hence, the current RAP-PEG-PLGA could be a potential therapeutic system for breast cancer treatment.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Polietilenglicoles , Sirolimus , Sirolimus/química , Sirolimus/administración & dosificación , Sirolimus/farmacología , Sirolimus/farmacocinética , Polietilenglicoles/química , Animales , Nanopartículas/química , Ratones , Portadores de Fármacos/química , Liberación de Fármacos , Línea Celular Tumoral , Células RAW 264.7 , Tamaño de la Partícula , Precipitación Química , Adsorción , Humanos , Poliésteres
8.
Environ Res ; 246: 118132, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218526

RESUMEN

Arsenic (As) has been widely detected in surface media on the Qinghai-Tibetan Plateau (QTP); however, the differences in the As distribution and partitioning characteristics between freshwater and saltwater lakes remain poorly understood. To determine the distribution and partitioning characteristics of As, multimedia environmental samples were collected from a typical small watershed consisting of a river, wetland, and both freshwater and saltwater lakes on the QTP. Results showed that freshwater systems, represented by Hurleg Lake, were high in particulate arsenic (PAs) and low in dissolved arsenic (DAs), whereas the saltwater system represented by Tosen Lake, exhibited the reverse distribution. This discrepancy in As distribution was primarily attributed to evaporation enrichment, competitive adsorption of HCO3- and pH variations, as suggested by correlation analysis and stable isotopic composition of water. In the stratified Tosen Lake, an increasing trend of DAs in the water column was observed, potentially driven by the reductive dissolution of Fe (hydr)oxides and bacterial sulfate reduction in the anoxic bottom hypolimnion. Conversely, Hurleg Lake maintained oxic conditions with stable DAs concentrations. Notably, PAs was elevated in the bottom layer of both lakes, possibly due to uptake/adsorption by biogenic particles, as indicated by high levels of chl.α and suspended particulate matter. These findings offer insights into the potential future impact of climate change on As mobilization/redistribution in arid plateau lakes, with implications for management policies that regulate As pollution.


Asunto(s)
Arsénico , Lagos , Lagos/química , Arsénico/análisis , Tibet , Monitoreo del Ambiente/métodos , Agua , China
9.
J Food Sci ; 89(2): 851-865, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38174744

RESUMEN

Cell-based meat technology provides an effective method to meet the demand for meat, while also posing a huge challenge to the expansion of myoblasts. It is difficult to develop serum-free medium suitable for long-term culture and large-scale expansion of myoblasts, which causes limited understanding of myoblasts expansion. Therefore, this study used C2C12 myoblasts as model cells and developed a serum-free medium for large-scale expansion of myoblasts in vitro using the Plackett-Burman design. The serum-free medium can support short-term proliferation and long-term passage of C2C12 myoblasts, while maintaining myogenic differentiation potential well, which is comparable to those of growth medium containing 10% fetal bovine serum. Based on the C2C12 myoblasts microcarriers serum-free culture system established in this study, the actual expansion folds of myoblasts can reach 43.55 folds after 7 days. Moreover, cell-based meat chunks were preliminarily prepared using glutamine transaminase and edible pigments. The research results provide reference for serum-free culture and large-scale expansion of myoblasts in vitro, laying the foundation for cell-based meat production. PRACTICAL APPLICATION: This study developed a serum-free medium suitable for long-term passage of myoblasts and established a microcarrier serum-free culture system for myoblasts, which is expected to solve the problem of serum-free culture and large-scale expansion of myoblasts in cell culture meat production.


Asunto(s)
Técnicas de Cultivo de Célula , Carne in Vitro , Proliferación Celular , Técnicas de Cultivo de Célula/métodos , Mioblastos , Diferenciación Celular
10.
Afr Health Sci ; 23(3): 607-615, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38357157

RESUMEN

Background: To investigate the expression of Th17, T lymphocyte immunoglobulin mucin 3 (TIM-3+) cells and their related cytokines in atrial fibrillation (AF) and their clinical significance. Methodology: A total of 90 patients with AF were divided into paroxysmal group (n=45) and chronic group (n=45), and 45 healthy volunteers were selected as the control group. The proportion of Th17 cells and Tim-3 + cells in the peripheral blood were detected. The concentrations of related cytokines in peripheral blood serum were determined. The correlation between Th17 / Tim-3+ cells and related cytokines was analysed. Results: Compared with the control group, the proportion of Th17 cells and the concentration of related cytokines (IL-17, IL-6 and Matrix metalloproteinase (MMP9)) in peripheral blood of patients with paroxysmal and chronic AF increased significantly, while the proportion of tim3 + cells and the concentration of related cytokines decreased significantly. Compared with the paroxysmal group, the proportion of Th17 cells and the concentration of related cytokines in the peripheral blood of patients in the chronic group increased significantly, while the proportion of tim3 + cells and the concentration of related cytokines decreased significantly. Conclusion: Th17 / Tim-3 + cell balance is involved in AF, and can be used as a target for AF treatment.


Asunto(s)
Fibrilación Atrial , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Mucina 3/metabolismo , Fibrilación Atrial/etiología , Citocinas/metabolismo , Células Th17/metabolismo , Células Th17/patología , Inmunoglobulinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA