Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Digit Health ; 10: 20552076241239177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550263

RESUMEN

Objective: Fibromyalgia (FM) is a prevalent pain syndrome with significant healthcare and societal costs. The aim of the SMART-FM-SP study is to determine the effectiveness, cost-utility, and physiological effects in patients with FM of a digital intervention (STANZA®) currently marketed in the United States, which delivers smartphone-based, fully self-guided Acceptance and Commitment Therapy (Digital ACT) for treating FM-related symptoms. Methods: A single-site, parallel-group, superiority, randomized controlled trial (RCT) will be conducted, including a total of 360 adults diagnosed with FM. Individuals will be randomly allocated (1:1:1) to treatment as usual (TAU), to TAU plus 12 weeks of treatment with Digital ACT, or to TAU plus 12 weeks of treatment with digital symptom tracking (i.e. FibroST). Participants will be assessed at baseline, post-treatment, and 6-month follow-up. An intention-to-treat analysis using linear mixed models will be computed to analyze the effects of Digital ACT on functional impairment (primary outcome), as measured by the Fibromyalgia Impact Questionnaire Revised at 6 months from the inception of the treatment. Secondary outcomes include impression of change, symptoms of distress, pain catastrophising, quality of life, cost-utility, and selected biomarkers (cortisol and cortisone, immune-inflammatory markers, and FKBP5 gene polymorphisms). The role of ACT-related processes of change will be tested with path analyses. Conclusions: This study is the first RCT that tests Digital ACT for Spanish patients with FM. Results will be important not only for patients and clinicians, but also for policy makers by examining the cost-utility of the app in a public healthcare context.

2.
Medicine (Baltimore) ; 103(12): e37308, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38518012

RESUMEN

Disulfidptosis is a newly discovered cell death pattern that has been less studied in head and neck squamous carcinoma (HNSCC). Exploring the molecular features of different subtypes of HNSCC based on disulfidptosis-associated genes (DAGs) is important for HNSCC. In addition, immunotherapy plays a pivotal role in the treatment of HNSCC. Exploring the sensitivity of immunotherapies and developing predictive models is essential for HNSCC. We analyzed the expression and mutational status of DAGs in 790 HNSCC patients and correlated the dates with clinical prognosis. HNSCC patients were divided into 2 groups based on their DAG expression. The relationship between DAGs, risk genes, and the immune microenvironment was analyzed using the CIBERSORT algorithm. A disulfidptosis risk model was constructed based on 5 risk genes using the LASSO COX method. To facilitate the clinical applicability of the proposed risk model, we constructed column line plots and performed stem cell correlation analysis and antitumor drug sensitivity analysis. Two different disulfidptosis-associated clusters were identified using consistent unsupervised clustering analysis. Correlations between multilayer DAG alterations and clinical characteristics and prognosis were observed. Then, a well-performing disulfidptosis-associated risk model (DAG score) was developed to predict the prognosis of HNSCC patients. We divided patients into high-risk and low-risk groups based on the DAG score and found that patients in the low-risk group were more likely to survive than those in the high-risk group (P < .05). A high DAG score implies higher immune cell infiltration and increased mutational burden. Also, univariate and multivariate Cox regression analyses revealed that the DAG score was an independent prognostic predictor for patients with HNSCC. Subsequently, a highly accurate predictive model was developed to facilitate the clinical application of DAG scores, showing good predictive and calibration power. Overall, we present a comprehensive overview of the DAG profile in HNSCC and develop a new risk model for the therapeutic status and prognosis of patients with HNSCC. Our findings highlight the potential clinical significance of DAG and suggest that disulfidptosis may be a potential therapeutic target for patients with HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Inmunoterapia , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Pronóstico , Algoritmos , Neoplasias de Cabeza y Cuello/genética , Microambiente Tumoral
3.
Int J Biol Macromol ; 256(Pt 2): 128269, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029912

RESUMEN

Histone acetylation, a crucial epigenetic mechanism, has been suggested to play a role in diapause regulation, but this has not been confirmed through gene loss-of-function studies. In this work, we investigated the involvement of MYST family genes, which are key writers of histone acetylation, in initiating reproductive diapause using the cabbage beetle Colaphellus bowringi as a model. We identified C. bowringi orthologs of MYST, including Tip60, KAT6A, KAT7, and KAT8, from previous transcriptomes. Analyses of phylogenetic trees and protein domains indicated that these MYST proteins are structurally conserved across animal species. Expression of these MYST genes was found to be enriched in heads and ovaries of C. bowringi. Under reproductive photoperiod conditions, RNAi targeting MYST genes, especially KAT8, suppressed ovarian growth and yolk deposition, resembling the characteristics of diapausing ovaries. Additionally, KAT8 knockdown led to the upregulation of diapause-related genes, such as heat shock proteins and diapause protein 1, and the emergence of diapause-like guts. Moreover, KAT8 knockdown reduced the expression of a crucial enzyme involved in juvenile hormone (JH) biosynthesis, likely due to decreased H4K16ac levels. Consequently, our findings suggest that MYST family genes, specifically KAT8, influence the JH signal, thereby regulating the initiation of reproductive diapause.


Asunto(s)
Escarabajos , Diapausa de Insecto , Diapausa , Animales , Diapausa de Insecto/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Filogenia , Histonas/genética , Histonas/metabolismo , Escarabajos/genética
4.
Dalton Trans ; 52(47): 18053-18060, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37990915

RESUMEN

Non-heme mononuclear iron complexes, especially when supported by tripodal tetradentate ligands, show promising C-H bond activation efficiency in catalytic reactions. Nevertheless, they intrinsically decay readily to their dinuclear form, and the dimerization process is inevitable in homogenous solution, which dramatically hinders their further application. Hence, we demonstrate that the mononuclear iron complex [(TPA)FeII-2L]2+ (L = labile ligands, mainly solvent molecules) was successfully encapsulated in a highly robust metal-organic framework UiO-66 via a two-step "ship-in-a-bottle" strategy. The nearly perfect size matching of the octahedral cages of the host UiO-66 provides ideal space confinement for the guest complex to protect from dimerization and dramatically increases the mono-nuclear complex stability compared to its un-confined state. The successful encapsulation of [(TPA)FeII-2L]2+ in UiO-66 was verified thoroughly by spectroscopy, microscopy, N2 adsorption, and electrochemistry characterization techniques. This work shows that encapsulating an unstable molecular complex in MOFs via a two-step "ship-in-a-bottle" strategy highlights opportunities for extending the heterogenization of homogeneous complexes.

5.
Free Radic Biol Med ; 208: 846-858, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37776918

RESUMEN

Cardiovascular diseases (CVDs) are leading causes of global mortality; however, their underlying mechanisms remain unclear. The tumor suppressor factor p53 has been extensively studied for its role in cancer and is also known to play an important role in regulating CVDs. Abnormal p53 expression levels and modifications contribute to the occurrence and development of CVDs. Additionally, mounting evidence underscores the critical involvement of mitochondrial dysfunction in CVDs. Notably, studies indicate that p53 abnormalities directly correlate with mitochondrial dysfunction and may even interact with each other. Encouragingly, small molecule inhibitors targeting p53 have exhibited remarkable effects in animal models of CVDs. Moreover, therapeutic strategies aimed at mitochondrial-related molecules and mitochondrial replacement therapy have demonstrated their advantageous potential. Therefore, targeting p53 or mitochondria holds immense promise as a pioneering therapeutic approach for combating CVDs. In this comprehensive review, we delve into the mechanisms how p53 influences mitochondrial dysfunction, including energy metabolism, mitochondrial oxidative stress, mitochondria-induced apoptosis, mitochondrial autophagy, and mitochondrial dynamics, in various CVDs. Furthermore, we summarize and discuss the potential significance of targeting p53 or mitochondria in the treatment of CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Proteína p53 Supresora de Tumor , Apoptosis , Autofagia/genética , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Humanos
6.
Phytomedicine ; 120: 155031, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37666060

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a common type of cancer that shows great morbidity and mortality rates. However, there are limited available drugs to treat HCC. AIM: The present work focused on discovering the potential anti-HCC compounds from traditional Chinese medicine (TCM) by employing high-throughput sequencing-based high-throughput screening (HTS2) together with the liver cancer pathway-associated gene signature. METHODS: HTS2 assay was adopted for identifying herbs. Protein-protein interaction (PPI) network analysis and computer-aided drug design (CADD) were used to identify key targets and screen the candidate natural products of herbs. Molecular docking, network pharmacology analysis, western blotting, immunofluorescent staining, subcellular fractionation experiment, dual-luciferase reporter gene assay, surface plasmon resonance (SPR) as well as nuclear magnetic resonance (NMR) were performed to validate the ability of compound binding with key target and inhibiting its function. Moreover, cell viability, colony-forming, cell cycle assay and animal experiments were performed to examine the inhibitory effect of compound on HCC. RESULTS: We examined the perturbation of 578 herb extracts on the expression of 84 genes from the liver cancer pathway, and identified the top 20 herbs significantly reverting the gene expression of this pathway. Signal transducer and activator of transcription 3  (STAT3)  was identified as one of the key targets of the liver cancer pathway by PPI network analysis. Then, by analyzing compounds from top 20 herbs utilizing CADD, we found ginsenoside F2 (GF2) binds to STAT3 with high affinity, which was further validated by the results from molecular docking, SPR and NMR. Additionally, our results showed that GF2 suppresses the phosphorylation of Y705 of STAT3, inhibits its nuclear translocation, decreases its transcriptional activity and inhibits the growth of HCC in vitro and in vivo. CONCLUSION: Based on this large-scale transcriptional study, a number of anti-HCC herbs were identified. GF2, a compound derived from TCM, was found to be a chemical basis of these herbs in treating HCC. The present work also discovered that GF2 is a new STAT3 inhibitor, which is able to suppress HCC. As such, GF2 represents a new potential anti-HCC therapeutic strategy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Factor de Transcripción STAT3 , Simulación del Acoplamiento Molecular
7.
Medicine (Baltimore) ; 102(5): e32802, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36749224

RESUMEN

RATIONALE: Mayer-Rokitansky-Küster-Hauser syndrome (MRKH syndrome) present with genital inguinal hernia was rare and probably under reported, on account of lack in typical gynecological symptom. It should be regarded with care.Here 3 cases diagnosed at our institution with detailed clinical information were present, and the literature was reviewed to paint a comprehensive profile of hernia uterine inguinale associated with MRKH syndrome. PATIENT CONCERNS: Case no. 1 was a 36-year-old female with recurrent dragalgia for 5 years. Left rudimentary uterus at the left groin area was revealed by sonography scan and confirmed by diagnostic laparoscopy.Case no. 2 was a 27-year-old woman diagnosed with MRKH syndrome and her MRI examination suggested a suspicious swelling measuring 2.0cm×2.0cm in left groin. The left nonfunctionally rudimentary uterus and adnexa were incarcerated in the left inguinal hernial sac, which was revealed by laparoscopy.Case no. 3 was a 29-year-old woman, admitted with right abdominal pain with a provisional diagnosis of appendicitis. After appendicectomy, pelvic exploration showed a part of left rudimentary uterus and elongated oviduct herniated through the left internal inguinal ring. DIAGNOSES: Hernia uterine inguinale associated with MRKH syndrome. INTERVENTIONS AND OUTCOMES: Case no.1: When the rudimentary uterus was pulled out from the hernia sac, it appearance dark ocher. Then the left rudimentary uterus was removed and the indirect defect of inguinal duct was closed.The patient was followed up for 18 months with no recurrence of abdominal pain.Case no.2 and 3:The left rudimentary uterus were replaced from the hernia sac, and the indirect defect was fixed with sutures.The patients recovered smoothly without complications for 12-month follow-up. LESSONS: Left involvement of rudimentary uterus was frequently observed in patients with MRKH syndrome, along with ipsilateral ovary and/or fallopian tube horned in the hernia. Abdominal pain or inguinale mass could be the chief complaints while some individuals were asymptomatic. Either surgical removal or replacement of rudimentary uterus was an effectively optional treatment strategy for hernia uterine inguinale.When a patient with MRKH syndrome presented with abdominal pain of unknown cause or inguinal mass, rudimentary uterine inguinal hernia should be suspected.


Asunto(s)
Anomalías Múltiples , Anomalías Congénitas , Hernia Inguinal , Humanos , Femenino , Adulto , Anomalías Múltiples/diagnóstico , Hernia Inguinal/etiología , Útero/cirugía , Conductos Paramesonéfricos , Dolor Abdominal , Anomalías Congénitas/diagnóstico
8.
J Ethnopharmacol ; 306: 116134, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36627003

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Yupingfeng San (YPFS) is a classic rousing prescription in Chinese medicine, with widly clinical application and remarkably curative effect. It consists of three herbs named Astragalus mongholicus Bunge (Huangqi), Atractylodes rubra Dekker (Baizhu) and Saposhnikovia divaricata (Turcz.) Schischk. (Fangfeng), and has a variety of pharmacological activities including immune regulation, antioxidant, anti-tumor, regulation of cytokines, etc. AIM OF THE STUDY: It has been proved that YPFS exerts its anti-tumor effect through enhancing the systemic and local immune responses in tumor patients, moreover, it has the direct tumor-suppressing effect and can reduce the adverse reactions caused by radiotherapy and chemotherapy drugs. Therefore, in this study, we explored the potential anti-HCC mechanism of YPFS based on HTS2 technology and systems pharmacology, aiming to provide a scientific basis for the clinical application of YPFS and a new strategy for Chinese medicine research. MATERIALS AND METHODS: In this study, systems pharmacology plus high throughput sequencing-based high throughput screening (HTS2) technology, and experimental validation were used to investigate the therapeutic mechanisms and the chemical basis of YPFS in HCC treatment. Firstly, the potential therapeutic targets and signaling pathways of YPFS in the treatment of HCC were obtained through systems pharmacology. Subsequently, HTS2 technology combined with PPI network analysis were used to reveal potential therapeutic targets. Finally, the anti-HCC effects and underlying mechanisms of YPFS were further verified in vitro in human hepatocellular carcinoma cell lines. Moreover, the possible chemical basis was explored by drug target verification and molecular docking technology. RESULTS: In total, 183 active ingredients were predicted by YPFS screening and 49 anti-HCC targets were further identified. Most of these targets were enriched into the "MAPK pathway", and the expression of 37 genes was significantly changed after herb treatment. Among them, 5 key targets, including VEGFA, GRB2, JUN, PDGFRB and CDC42, were predicted by protein-protein interaction (PPI) network analysis. According to our results, YPFS inhibited the proliferation, induced the apoptosis and caused cell cycle arrest of HCC cells. In addition, YPFS significantly reduced P38 gene expression. Fangfeng, one of the three herbs in YPFS, significantly down-regulated the expression of more target genes than that of the other two herbs. Lastly, as revealed by molecular docking analysis, 4'-O-glucosyl-5-O-methylvisamminol, an active ingredient identified in Fangfeng, showed a high affinity for P38. CONCLUSION: Taken together, this study shows that YPFS possesses the activities of anti-proliferation and pro-apoptosis in treating HCC, which are achieved by inhibiting the MAPK signaling pathway. P38 is one of the critical targets of YPFS in treating HCC, which may be directly bound and inhibited by 4'-O-glucosyl-5-O-methylvisamminol, a compound derived from YPFS.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Medicamentos Herbarios Chinos/farmacología , Línea Celular
10.
Front Plant Sci ; 13: 1000297, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212358

RESUMEN

Small secreted peptides (SSPs) are important signals for cell-to-cell communication in plant, involved in a variety of growth and developmental processes, as well as responses to stresses. While a large number of SSPs have been identified and characterized in various plant species, little is known about SSPs in wheat, one of the most important cereal crops. In this study, 4,981 putative SSPs were identified on the wheat genome, among which 1,790 TaSSPs were grouped into 38 known SSP families. The result also suggested that a large number of the putaitive wheat SSPs, Cys-rich peptides in particular, remained to be characterized. Several TaSSP genes were found to encode multiple SSP domains, including CLE, HEVEIN and HAIRPININ domains, and two potentially novel TaSSP family DYY and CRP8CI were identified manually among unpredicted TaSSPs. Analysis on the transcriptomic data showed that a great proportion of TaSSPs were expressed in response to abiotic stresses. Exogenous application of the TaCEPID peptide encoded by TraesCS1D02G130700 enhanced the tolerance of wheat plants to drought and salinity, suggesting porential roles of SSPs in regulating stress responses in wheat.

11.
Front Microbiol ; 13: 999996, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081795

RESUMEN

Excessive inflammation causes chronic diseases and tissue damage. Although there has been drug treatment, its side effects are relatively large. Searching for effective anti-inflammatory drugs from natural products has become the focus of attention. First isolated from Trichoderma longibraciatum, trichodimerol is a natural product with TNF inhibition. In this study, lipopolysaccharide (LPS)-induced RAW264.7 macrophages were used as a model to investigate the anti-inflammatory activity of trichodimerol. The results of nitric oxide (NO) detection, enzyme-linked immunosorbent assay (ELISA), and reactive oxygen species (ROS) showed that trichodimerol could reduce the production of NO, ROS, and the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α. Western blotting results showed that trichodimerol could inhibit the production of inflammatory mediators such as cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) and the protein expression of nuclear transcription factor-kappaB (NF-κB), p-IKK, p-IκB, Toll-like receptor 4 (TLR4), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cysteinyl aspartate specific proteinase (Caspase)-1, and ASC, which indicated that trichodimerol may inhibit inflammation through the NF-κB and NLRP3 pathways. At the same time, molecular docking showed that trichodimerol can directly combine with the TLR4-MD2 complex. Hence, trichodimerol inhibits inflammation by obstructing the interaction between LPS and the TLR4-MD2 heterodimer and suppressing the downstream NF-κB and NLRP3 pathways.

12.
Acta Biochim Biophys Sin (Shanghai) ; 55(1): 23-33, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36017888

RESUMEN

Neuroinflammation mediated by microglia is an important pathophysiological mechanism in neurodegenerative diseases. However, there is a lack of effective drugs to treat neuroinflammation. N-acetyldopamine dimer (NADD) is a natural compound from the traditional Chinese medicine Isaria cicada. In our previous study, we found that NADD can attenuate DSS-induced ulcerative colitis by suppressing the NF-κB and MAPK pathways. Does NADD inhibit neuroinflammation, and what is the target of NADD? To answer this question, lipopolysaccharide (LPS)-stimulated BV-2 microglia was used as a cell model to investigate the effect of NADD on neuroinflammation. Nitric oxide (NO) detection, reactive oxygen species (ROS) detection and enzyme-linked immunosorbent assay (ELISA) results show that NADD attenuates inflammatory signals and proinflammatory cytokines in LPS-stimulated BV-2 microglia, including NO, ROS, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and interleukin-6 (IL-6). Western blot analysis show that NADD inhibits the protein levels of Toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), ASC and cysteinyl aspartate specific proteinase (Caspase)-1, indicating that NADD may inhibit neuroinflammation through the TLR4/NF-κB and NLRP3/Caspase-1 signaling pathways. In addition, surface plasmon resonance assays and molecular docking demonstrate that NADD binds with TLR4 directly. Our study reveals a new role of NADD in inhibiting the TLR4/NF-κB and NLRP3/Caspase-1 pathways, and shows that TLR4-MD2 is the direct target of NADD, which may provide a potential therapeutic candidate for the treatment of neuroinflammation.


Asunto(s)
FN-kappa B , Receptor Toll-Like 4 , Humanos , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácido Aspártico/metabolismo , Enfermedades Neuroinflamatorias , Péptido Hidrolasas/metabolismo , Lipopolisacáridos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Simulación del Acoplamiento Molecular , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Caspasas/metabolismo , Microglía/metabolismo
13.
Comput Struct Biotechnol J ; 20: 3461-3472, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860405

RESUMEN

Taohong Siwu Decoction (TSD), a classical gynecological prescription that was firstly reported 600 years ago, has been widely used in the adjuvant treatment of breast cancer (BRCA) in China. However, the mechanism of action of TSD in treating BRCA has remained unclear. Here, high-throughput sequencing-based high-throughput screening (HTS2) technology was used to reveal the molecular mechanism of TSD, combination with bioinformatics and systems pharmacology in this study. Firstly, our results showed that TSD exerts an anticancer effect on BRCA cells by inhibiting cell proliferation, migration and inducing apoptosis as well as cell-cycle arrest. And our results from HTS2 suggested that herbs of TSD could significantly inhibit KRAS pathway and pathway in cancer, and activate apoptosis pathway, p53 pathway and hypoxia pathway, which may lead to the anticancer function of TSD. Further, we found that TSD clearly regulates MYC, BIRC5, EGF, and PIK3R1 genes, which play an important role in the development and progression of tumor and have significant correlation with overall survival in BRCA patients. By molecular docking, we discovered that Pentagalloylglucose, a compound derived from TSD, might directly bind to and inhibit the function of BRD4, which is a reported transcriptional activator of MYC gene, and thus repress the expression of MYC. Taken together, this study explores the mechanism of TSD in anti-BRCA by combining HTS2 technology, bioinformatics analysis and systems pharmacology.

14.
Knee Surg Relat Res ; 34(1): 32, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799307

RESUMEN

INTRODUCTION: Conventionally, the depth of distal femoral resection in total knee arthroplasty is referenced from the most prominent distal femoral condyle. This surgical technique does not consider pathological alterations of articular surfaces or severity of knee deformity. It has been hypothesized that the femoral intercondylar notch is a clinically reliable and more accurate alternative landmark for the resection depth of the distal femur in primary total knee arthroplasty. METHODS: The resection depths of the distal femur at the medial and lateral femoral condyles and intercondylar notch were measured using computer navigation in 406 total knee arthroplasties. Variability between the bone resection depths was analyzed by standard deviation, 95% confidence interval and variance. Clinical follow-up of outcome to a minimum of 12 months was performed to further inform and validate the analysis. RESULTS: Mean resection depth of the medial condyle was 10.7 mm, of the lateral condyle 7.9 mm and of the femoral intercondylar notch 1.9 mm. The femoral intercondylar notch had the lowest variance in resection depth among the three landmarks assessed, with a variance of 1.7 mm2 compared to 2.8 mm2 for the medial femoral condyle and 5.1 mm2 for the lateral femoral condyle. The intercondylar notch reference had the lowest standard deviation and 95% confidence interval. The resection depth referencing the notch was not sensitive to the degree of flexion contracture pre-operatively, whereas the medial and lateral condyles were. For varus deformed knees, distal femoral resection depth at the notch averaged 2 mm, which corresponds to the femoral prosthesis thickness at the intercondylar region, while for valgus deformed knees, the resection was flush with the intercondylar notch. CONCLUSIONS: The femoral intercondylar notch is a clinically practical and reproducible landmark for appropriate and accurate resection depth of the distal femur in primary total knee arthroplasty. LEVEL OF EVIDENCE: Level III: Retrospective cohort study.

15.
Front Pharmacol ; 13: 842730, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35462925

RESUMEN

Ulcerative Colitis (UC) is a major form of chronic inflammatory bowel disease of the colonic mucosa and exhibits progressive morbidity. There is still a substantial need of small molecules with greater efficacy and safety for UC treatment. Here, we report a N-acetyldopamine dimer (NADD) elucidated (2R,3S)-2-(3',4'-dihydroxyphenyl)-3-acetylamino-7-(N-acetyl-2″-aminoethyl)-1,4-benzodioxane, which is derived from traditional Chinese medicine Isaria cicadae, exhibits significant therapeutic efficacy against dextran sulfate sodium (DSS)-induced UC. Functionally, NADD treatment effectively relieves UC symptoms, including weight loss, colon length shortening, colonic tissue damage and expression of pro-inflammatory factors in pre-clinical models. Mechanistically, NADD treatment significantly inhibits the expression of genes in inflammation related NF-κB and MAPK signaling pathways by transcriptome analysis and western blot, which indicates that NADD inhibits the inflammation in UC might through these two pathways. Overall, this study identifies an effective small molecule for UC therapy.

16.
Bioorg Chem ; 124: 105810, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35447407

RESUMEN

Three previously undescribed polyketides [proliferatin A-C (1-3)] with anti-inflammatory activity were isolated from Fusarium proliferatum. 1-3 attenuated the production of inflammatory signal messengers including nitric oxide (NO), reactive oxygen species, proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß), as well as the related proteins nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Transcriptome analyses based on RNA-seq indicated the potential anti-inflammatory mechanism of 1-3 involved in the nuclear factor kappa-B (NF-κB) and mitogen activated protein kinases (MAPKs) signaling pathways. Experimental evaluation of the protein levels revealed that 1-3 can inhibit the phosphorylation of IκB kinase (IKK), the degradation of NF-κB Inhibitor-α (IκBα), the phosphorylation of nuclear factor-κB (NF-κB) and can reduce NF-κB transportation to the nucleus. Interestingly, 1-3 decreased the phosphorylation of MAPKs including p-p38, p-ERK, and p-JNK. Molecular docking models suggest that binding of 1-3 to TLR4-MD-2 complex may lead to inhibition of NF-κB and MAPK signaling pathways, which was confirmed in vitro by surface plasmon resonance (SPR) assays. 1-3 can thus constitute potential therapeutic candidates for the treatment of inflammation-associated diseases.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ciclooxigenasa 2/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
17.
Cancer Med ; 11(16): 3168-3181, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35301800

RESUMEN

BACKGROUND: Metabolic reprogramming is one of the essential features of tumorigenesis. Herein, this study aimed to develop a novel metabolism-related gene signature for head and neck squamous cell carcinoma (HNSCC) patients. METHODS: The transcriptomic and clinical data of HNSCC samples were collected from The Cancer Genome Atlas (TCGA) and GSE65858 datasets. The metabolism-related gene-based prognostic signature (MRGPS) was constructed by the Least Absolute Shrinkage and Selection Operator (LASSO) regression model. The time-dependent receiver operating characteristic (ROC) and Kaplan-Meier (K-M) survival curves were plotted for evaluating its predicting performance. At the same time, univariate along with multivariate analysis was carried out to explore its correlation with clinicopathologic factors. Furthermore, GSEA analysis was performed to explore the signaling pathways affected by MRGPS. We also analyzed the associations of MRGPS with the tumor immune microenvironment (TIME), as well as identified potential compounds via Connectivity Map (CMap) and molecular docking. RESULTS: A total of 12 differentially expressed metabolism-related genes were identified and selected to construct the MRGPS. Notably, this signature performed well in predicting HNSCC patients' survival and could serve as an independent prognostic factor in multiple datasets. In addition to the metabolism-related pathway, this signature could also affect some immune-related pathways. The results indicated that MRGPS is correlated with immune cells infiltration and anti-cancer immune response. Furthermore, we identified cephaeline as a potential therapeutic compound for HNSCC. CONCLUSION: Taken together, we established an MRGs-based signature that has the potential to predict the clinical outcome and immune microenvironment, which help to search for potential combination immunotherapy compounds and provide a promising therapeutic strategy for treating HNSCC patients.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello , Neoplasias de Cabeza y Cuello/genética , Humanos , Simulación del Acoplamiento Molecular , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Microambiente Tumoral/genética
18.
Front Pharmacol ; 13: 881182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37124719

RESUMEN

Background: Excessive inflammation results in severe tissue damage as well as serious acute or chronic disorders, and extensive research has focused on finding new anti-inflammatory hit compounds with safety and efficacy profiles from natural products. As promising therapeutic entities for the treatment of inflammation-related diseases, fusaproliferin and its analogs have attracted great interest. However, the underlying anti-inflammatory mechanism is still poorly understood and deserves to be further investigated. Methods: For the estimation of the anti-inflammatory activity of fusaproliferin (1) and its analogs (2-4) in vitro and in vivo, lipopolysaccharide (LPS)-induced RAW264.7 macrophages and zebrafish embryos were employed. Then, transcriptome analysis was applied to guide subsequent western blot analysis of critical proteins in related signaling pathways. Surface plasmon resonance assays (SPR) combined with molecular docking analyses were finally applied to evaluate the affinity interactions between 1-4 and TLR4 and provide a possible interpretation of the downregulation of related signaling pathways. Results: 1-4 significantly attenuated the production of inflammatory messengers, including nitric oxide (NO), reactive oxygen species (ROS), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß), as well as nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in LPS-induced RAW264.7 macrophages. Transcriptome analyses based on RNA-seq indicated the ability of compound 1 to reverse LPS stimulation and the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPKs) signaling pathways contribute to the anti-inflammatory process. Experimental verification at the protein level revealed that 1 can inhibit the activation of inhibitor of NF-κB kinase (IKK), degradation of inhibitor of NF-κB (IκB), and phosphorylation of NF-κB and reduce nuclear translocation of NF-κB. 1 also decreased the phosphorylation of MAPKs, including p38, extracellular regulated protein kinases (ERK), and c-Jun N-terminal kinase (JNK). SPR assays and molecular docking results indicated that 1-4 exhibited affinity for the TLR4 protein with KD values of 23.5-29.3 µM. Conclusion: Fusaproliferin and its analogs can be hit compounds for the treatment of inflammation-associated diseases.

19.
J Nat Prod ; 84(12): 3044-3054, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34846889

RESUMEN

Overexpression of various pro-inflammatory factors in microglial cells tends to induce neurodegenerative diseases, for which there is no effective therapy available. Aureonitol (1) and seven analogues, including six previously undescribed [elatumenol A-F (2-4, 6-8, respectively)], along with two new orsellinic acid esters [elatumone A and B (9 and 10)], were isolated from Chaetomium elatum. The structures of the compounds were established through comprehensive analysis of spectroscopic data, including high-resolution mass spectra and one- and two-dimensional NMR, and absolute configurations determined by the Mosher method, dimolybdenum tetraacetate-induced circular dichroism, and theoretical calculations including electronic circular dichroism and NMR. Metabolites 3, 4, 7, and 8 exhibited antineuroinflammatory activity by attenuating the production of inflammatory mediators, such as nitric oxide, interleukin-6, interleukin-1ß, tumor necrosis factor-α, and reactive oxygen species. Western blot results indicated 8 decreases the level of inducible nitric oxide synthase and cyclooxygenase-2 and suppresses the expression of Toll-like receptor 4 and nuclear factor kappa-B (NF-κB) as well as the phosphorylation of the inhibitor of NF-κB and p38 mitogen-activated protein kinases in lipopolysaccharide-activated BV-2 microglial cells.


Asunto(s)
Antiinflamatorios/farmacología , Chaetomium/química , Furanos/farmacología , Microglía/efectos de los fármacos , Resorcinoles/farmacología , Animales , Ésteres/química , Furanos/química , Lipopolisacáridos/farmacología , Ratones , Óxido Nítrico/antagonistas & inhibidores , Resorcinoles/química , Análisis Espectral/métodos
20.
J Ethnopharmacol ; 274: 114042, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33775806

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bitter-cold herbs have been used to clearing heat and expelling damp in clinical practice in China for thousands of years. AIM OF THE STUDY: This study aimed to investigate the common molecular mechanism of bitter-cold herbs through network pharmacology analysis, molecular docking and experimental validation in vivo. MATERIALS AND METHODS: Network pharmacological analysis integrated with molecular docking was employed to identify the active compounds and core action targets of the bitter-cold herbs. Then, the yeast-induced pathological model was established, and the antipyretic effect of the herbs was evaluated by checking rectal temperatures of the mice hourly. Lastly, the protein expression of core targets was examined to reveal the antipyretic mechanism. RESULTS: A total of 52 lead compounds from the four bitter-cold herbs, Phellodendri Chinensis Cortex (PCC), Sophorae Flavescentis Radix (SFR), Gentianae Radix Et Rhozima (GRER) and Coptidis Rhizoma (CR), and 248 compounds-related targets were screened out with PTGS2 ranking the first. The results from molecular docking showed that 22 compounds adopted the same orientation as aspirin and had an excellent stability in the active site pocket of PTGS2. Furthermore, these herbs exerted potential therapeutic effects through 38 related pathways. On the other hand, the outcome of animal experiments showed that they could significantly attenuate the yeast-induced mice fever with dose-dependent relationship. Further experimental results demonstrated that administration of yeast suspension raised protein expression of PTGS2 significantly, which was evidently inhibited in the high or low-dose groups of GRER as well as in the low-dose group of SFR (P < 0.01) though a higher expression of PTGS2 was shown in the low-dose group of CR compared with FM group (P < 0.01). CONCLUSIONS: The bitter-cold herbs can alleviate fever response and their antipyretic effect may mainly be attributed to regulating the expression of PTGS2 after the formation of ligand-receptor/PTGS2 complexes, and their active compounds might be nominated as antipyretic lead-ligand candidates.


Asunto(s)
Antipiréticos/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Fiebre/tratamiento farmacológico , Fitoquímicos/uso terapéutico , Animales , Antipiréticos/farmacología , Ciclooxigenasa 2/metabolismo , Medicamentos Herbarios Chinos/farmacología , Femenino , Masculino , Medicina Tradicional China , Ratones , Simulación del Acoplamiento Molecular , Farmacología/métodos , Fitoquímicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...